Math, asked by User019, 1 year ago

Solve for x: x/x-1+x-1/x=4

Answers

Answered by nitinnunach6
20

Answer:

Step-by-step explanation:

Attachments:
Answered by qwsuccess
7

Given,

(\frac{x}{x-1})+(\frac{x-1}{x})=4.

To Find,

The value of x.

Solution,

We need to simplify the (\frac{x}{x-1})+(\frac{x-1}{x}) first.

So we get,

(\frac{x}{x-1})+(\frac{x-1}{x})=4.

\frac{x^{2}+(x-1)^{2}  }{x(x-1)}=4.

\frac{2x^{2} -2x+1}{x^{2} -x}=4.

⇒2x^{2}-2x+1=4x^{2}-4x.

⇒2x^{2}-2x-1=0.

Apply Sri Dhar acharya's law to solve,

So, x = \frac{[-(-2)+\sqrt{4-4.2.(-1)} ]}{2.2} or x =\frac{[-(-2)-\sqrt{4-4.2.(-1)} ]}{2.2}

⇒x=\frac{[2+\sqrt{12} ]}{4} or x =\frac{[2-\sqrt{12} ]}{4}

⇒x=\frac{[1+\sqrt{3} ]}{2} or x= \frac{[1-\sqrt{3} ]}{2}.

Hence, the value of x is either \frac{[1+\sqrt{3} ]}{2} or \frac{[1-\sqrt{3} ]}{2}

Similar questions