Math, asked by CoolorFoolSRS, 1 month ago

Solve \frac{{(\sqrt{3}+1)}^{2}}{{(\sqrt{3}-1)}^{2}}+\frac{{(\sqrt{3}-1)}^{2}}{{(\sqrt{3}+1)}^{2}}+1(3​−1)2(3​+1)2​+(3​+1)2(3​−1)2​+1

Attachments:

Answers

Answered by rahulchandragiri6
3

Step-by-step explanation:

I will tell you what formulae I used.

 {(a + b)}^{2}  =  {a}^{2}  +  {b}^{2}  + 2ab

 {(a - b)}^{2}  =  {a}^{2}  + {b}^{2}  - 2ab

(a + b)(a - b) =  {a}^{2}  -  {b}^{2}

 {(a + b)}^{2}  +  {(a - b)}^{2}  = 2( {a}^{2}  +  {b}^{2} )

If you like the process please comment.

Attachments:
Answered by Anonymous
14

Given to find the value of :-

 \dfrac{ (\sqrt{3}  + 1) {}^{2} }{( \sqrt{3}  - 1) {}^{2} }  +  \dfrac{( \sqrt{3 }  - 1) {}^{2} }{( \sqrt{3}  + 1) {}^{2} }  + 1

 \dfrac{ (\sqrt{3}  + 1) {}^{2} }{( \sqrt{3}  - 1) {}^{2} }  +  \dfrac{( \sqrt{3 }  - 1) {}^{2} }{( \sqrt{3}  + 1) {}^{2} }  + 1

SOLUTION :-

Simplify the numerator and denominator which is in form of (a+b)² and (a-b)²

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² -2ab +b²

First we simplify the first term  \dfrac{( \sqrt{3}) {}^{2}  + (1) {}^{2} + 2(1)( \sqrt{3}  ) }{( \sqrt{3}) {}^{2} + (1) {}^{2}    - 2(1)( \sqrt{3}) }

 \dfrac{3 + 1 + 2 \sqrt{3} }{3 + 1 - 2 \sqrt{3} }

 \dfrac{4 + 2 \sqrt{3} }{4 - 2 \sqrt{3} }

So,

 \dfrac{ (\sqrt{3}  + 1) {}^{2} }{( \sqrt{3} - 1) {}^{2}  }  =  \dfrac{4 + 2 \sqrt{3} }{4 - 2 \sqrt{3} }

Now , we shall simplify the 2nd term

 \dfrac{( \sqrt{3} - 1) {}^{2}  }{( \sqrt{3}   + 1) {}^{2}  }

\dfrac{( \sqrt{3}) {}^{2}  + (1) {}^{2} - 2(1)( \sqrt{3}  ) }{( \sqrt{3}) {}^{2} + (1) {}^{2}    +2(1)( \sqrt{3}) }

\dfrac{4 - 2 \sqrt{3} }{4 + 2 \sqrt{3} }

So,

 \dfrac{( \sqrt{3} - 1) {}^{2}  }{( \sqrt{3}   + 1) {}^{2}  }  =  \dfrac{4 - 2 \sqrt{3} }{4 + 2 \sqrt{3} }

 \dfrac{ (\sqrt{3}  + 1) {}^{2} }{( \sqrt{3}  - 1) {}^{2} }  +  \dfrac{( \sqrt{3 }  - 1) {}^{2} }{( \sqrt{3}  + 1) {}^{2} }  + 1

 \dfrac{4 + 2 \sqrt{3} }{4 - 2 \sqrt{3} }  +  \dfrac{4 - 2 \sqrt{3} }{4 + 2 \sqrt{3} }  + 1

 \dfrac{(4 + 2 \sqrt{3}) {}^{2}  + (4 - 2 \sqrt{3}) {}^{2}  + (4 - 2 \sqrt{3})(4 + 2 \sqrt{3}   ) }{(4 - 2 \sqrt{3})(4 + 2 \sqrt{3}  )}

 \dfrac{2(16   +  12) + 16 - 12}{16 - 12}

 \dfrac{2(28) + 4}{4}

 \dfrac{56 + 4}{4}

 \dfrac{60}{4}

 = 15

Used formulae:-

  • (a+b)² = a² + 2ab + b²
  • (a-b)² = a² -2ab + b²
  • (a+b)(a-b) = a²-b²
  • (a+b)² +(a-b)² = 2a² + 2b²

Know more some of the formulae

( a + b )² - ( a - b)² = 4ab

( a + b + c )² = a² + b² + c² + 2ab + 2bc + 2ca

a² + b² = ( a + b)² - 2ab

(a + b )³ = a³ + b³ + 3ab ( a + b)

( a - b)³ = a³ - b³ - 3ab ( a - b)

If a + b + c = 0 then a³ + b³ + c³ = 3abc

Attachments:
Similar questions