Math, asked by anshikag313gmailcom, 8 months ago

solve from substitution method
4x+y=24
3x-5y=18​

Answers

Answered by mysticd
1

 Given \: system \: of \: equations :

 4x + y = 24 \implies y = 24 - 4x \: --(1)

 3x - 5y = 18 \: ---(2)

/* Substitute y = 24 - 4x in equation (2) , we get */

 3x - 5(24-4x) = 18

 \implies 3x - 120 + 20x = 18

 \implies 23x = 18 + 120

 \implies 23x = 138

 \implies x = \frac{138}{23}

 \implies x = 6

/* Put x = 6 in equation (1), we get */

 y = 24 - 4 \times 6

 \implies y = 24 - 24

 \implies y = 0

Therefore.,

 \green { x = 6 \: and \: y = 0 }

•••♪

Answered by hashman01
0

Givensystemofequations:

4x + y = 24 \implies y = 24 - 4x \: --(1)4x+y=24⟹y=24−4x−−(1)

3x - 5y = 18 \: ---(2)3x−5y=18−−−(2)

/* Substitute y = 24 - 4x in equation (2) , we get */

3x - 5(24-4x) = 183x−5(24−4x)=18

\implies 3x - 120 + 20x = 18⟹3x−120+20x=18

\implies 23x = 18 + 120⟹23x=18+120

\implies 23x = 138⟹23x=138

\implies x = \frac{138}{23}⟹x=

23

138

\implies x = 6⟹x=6

/* Put x = 6 in equation (1), we get */

y = 24 - 4 \times 6y=24−4×6

\implies y = 24 - 24⟹y=24−24

\implies y = 0⟹y=0

Therefore.,

\green { x = 6 \: and \: y = 0 }x=6andy=0

Similar questions