Math, asked by saninagashree, 2 days ago

Solve graphically: 4x+ 2y =6 & 2x-2y=6

Answers

Answered by girlherecrazy
1

Answer:

First, we need to determine the x and y intercepts.

x-intercept

Set y equal to 0 and solve for x:

4x=(2⋅0)+6

4x=0+6

4x=6

4x4=64

4x4=32

x=32

(32,0)

x-intercept

Set x equal to 0 and solve for y:

4⋅0=2y+6

0=2y+6

0−6=2y+6−6

−6=2y+0

−6=2y

−62=2y2

−3=

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider first equation,

\rm \: 4x + 2y = 6 \\

\rm \: 2(2x + y) = 6 \\

\rm \: 2x + y = 3 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 2 \times 0 + y = 3 \\

\rm \: 0 + y = 3 \\

\rm\implies \:y = 3 \\

Substituting 'y = 0' in the given equation, we get

\rm \: 2x + 0 = 3 \\

\rm \: 2x = 3 \\

\rm\implies \:x = 1.5 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\color{blue}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 3 \\ \\ \sf 1.5 & \sf 0 \end{array}} \\ \end{gathered}

Consider second equation,

\rm \: 2x - 2y = 6 \\

\rm \: 2(x - y) = 6 \\

\rm\implies \:x - y = 3 \\

Substituting 'x = 0' in the given equation, we get

\rm \: 0 - y = 3 \\

\rm \:  - y = 3 \\

\rm\implies \:y =  - 3 \\

Substituting 'y = 0' in the given equation, we get

\rm \: x - 0 = 3 \\

\rm\implies \:x = 3 \\

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\color{green}\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 3 \\ \\ \sf 3 & \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , 3), (1.5 , 0), (0, - 3) & (3 , 0)

➢ See the attachment graph.

So, from graph we concluded that given system of equations is consistent having unique solution and solution is

\boxed{ \rm{ \: \: x \: =   \:  2 \:  \:  \: and \:  \:  \: y \:  =  \:  -  \: 1 \: }} \\

Attachments:
Similar questions