solve I.V.P (3xy + y²) dx + (x² + xy) dy = 0 , y(1) = 1
Answers
Answered by
1
Step-by-step explanation:
x
2
+xy)
dx
dy
+y
2
+3xy=0
Substituting y=vx⇒
dx
dy
=v+x
dx
dv
(x
2
+x
2
v)(x
dx
dv
+v)+x
2
v
2
+3x
2
v=0
⇒x
2
(x
dx
dv
+2v
2
+(x
dx
dv
+4)v)=0
⇒
dx
dv
=−
x(v+1)
2v
2
+2v
=
x(v+1)
2(v+2)v
⇒
v(v+2)
dx
dv
(v+1)
=−
x
2
Integrating both sides w.r.t x, we get
∫
v(v+2)
dx
dv
(v+1)
dx=∫−
x
2
dx
⇒
2
1
log(v+2)+
2
1
logv=−2logx+c
⇒
2
1
log(
x
y
+2)+
2
1
log
x
y
=−2logx+c
Now y(1)=1⇒x
2
y(2x+y)=3
Similar questions