Math, asked by hemageorge1975, 5 months ago

Solve integration x minus 1 divided by (x minus 2) (x minus 3 )

Answers

Answered by shadowsabers03
31

To find the value of,

\displaystyle\longrightarrow I=\int\dfrac{x-1}{(x-2)(x-3)}\ dx

We need to perform partial fraction decomposition.

Let,

\longrightarrow\dfrac{x-1}{(x-2)(x-3)}=\dfrac{A}{x-2}+\dfrac{B}{x-3}

\longrightarrow A(x-3)+B(x-2)=x-1

Put x=3, then,

\longrightarrow B=2

Put x=2, then,

\longrightarrow -A=1

\longrightarrow A=-1

So,

\longrightarrow\dfrac{x-1}{(x-2)(x-3)}=-\dfrac{1}{x-2}+\dfrac{2}{x-3}

Therefore,

\displaystyle\longrightarrow I=\int\left(-\dfrac{1}{x-2}+\dfrac{2}{x-3}\right)\ dx

\displaystyle\longrightarrow I=-\int\dfrac{1}{x-2}\ dx+2\int\dfrac{1}{x-3}\ dx

\displaystyle\longrightarrow I=-\log|x-2|+2\log|x-3|+C

\displaystyle\longrightarrow\underline{\underline{I=\log\left|\dfrac{(x-3)^2}{x-2}\right|+C}}

Similar questions