Math, asked by seth87, 1 year ago

solve it ..................​

Attachments:

seth87: answer is 9

Answers

Answered by sivaprasath
1

Answer:

9

Step-by-step explanation:

Given :

The expression ax⁴ + bx³ - x² + 2x + 3, when divided by x² + x - 2 , gives 4x + 3 as remainder. then, a + 4b is equal to

Solution :

We know that,

P(x) = q(x) × d(x) + r(x)

p(x) = divident,

q(x) = Quotient

d(x) = divisor

r(x) = remainder

By using remainder theorem,

x² + x - 2 = 0

⇒ x² - x + 2x - 2 = 0

⇒ x (x - 1) +2 (x - 1) = 0

⇒ (x - 1)(x + 2) = 0

⇒ for product of 2 numbers to be 0,

Atleast one of them must be 0 (or) both are zeroes,.

⇒ (x - 1) = 0 (or)  (x + 2) = 0

⇒ x = 1 (or) x = -2

__

ax⁴ + bx³ - x² + 2x + 3 = q(x) × d(x) + r(x)

⇒ ax⁴ + bx³ - x² + 2x + 3 - r(x) =  q(x) × d(x)

⇒ ax⁴ + bx³ - x² + 2x + 3 - (4x + 3) =  q(x) × d(x)

⇒ ax⁴ + bx³ - x² - 2x =  q(x) × d(x)

If x = 1,

⇒ ax⁴ + bx³ - x² - 2x = 0

⇒ a(1)⁴ + b(1)³ - (1)² - 2(1)  = 0

⇒ a + b - 1 - 2 - 0

⇒ a + b - 3 = 0 ⇒ a + b = 3 ...(i)

__

If x = -2,

⇒ ax⁴ + bx³ - x² - 2x = 0

⇒ a(-2)⁴ + b(-2)³ - (-2)² - 2(-2)  = 0

⇒ -2[ a(-2)³ + b(-2)² - (-2) - 2] = 0

⇒ a(-2)³ + b(-2)² - (-2) - 2 = 0

⇒ -8a + 4b + 2 - 2 = 0

⇒ -8a+ 4b - 0 = 0

⇒ 8a - 4b = 0

⇒ 4a - 2b = 0 ...(ii)

By adding (i) × 2 and (ii),

We get,

⇒ 2 × (a + b) + (4a - 2b) = 2 × (3) + 0

⇒ 2a - 2b + 4a + 2b = 6

⇒ 6a = 6

⇒ a = 1

Substituting value of a in (i),

We get,

a + b = 3

⇒ 1+ b = 3 ⇒ b = 3 - 1

⇒ b = 2..

__

⇒ a + 4b = 1 + 4 × (2) = 1 + 8 = 9

 


seth87: great answer
seth87: i give more questions help me to solve question
seth87: 2 ×equation 1 and 2 why
seth87: why you × buy 2
sivaprasath: Because I want to remove "b" from equation,.
sivaprasath: To get the value of A
sivaprasath: & Mark all my answers as Br...
sivaprasath: (As a help, from your side,.)
sivaprasath: Like this one,.
seth87: kk
Similar questions