Math, asked by sanjaytrivedi36, 1 year ago

Solve it:

(9th one)

Attachments:

Answers

Answered by Anonymous
5

Question :-

9) Solve for x :

  \sf{ \bigg( \frac{2}{5}  \bigg)}^{2x - 2}  =  \frac{32}{3125} . \\

Answer :-

→ x = 7/2 Or 3.5.

Step-by-step explanation :-

We have,

  \because \sf{ \bigg( \frac{2}{5}  \bigg)}^{2x - 2}  =  \frac{32}{3125} .   \\  \\  \sf  \implies { \bigg( \frac{2}{5}  \bigg)}^{2x - 2}  =  \frac{ {2}^{5} }{ {5}^{5} } . \\  \\  \sf \implies  \sf{ \bigg( \frac{2}{5}  \bigg)}^{2x - 2}  =   { \bigg( \frac{2}{5} \bigg) }^{5} . \\   \\ \tt on \: comparing \: we \: get \\  \\  \implies \sf 2x - 2  = 5. \\  \\  \sf \implies2x  = 5 + 2. \\  \\  \sf \implies2x = 7. \\  \\  \sf \implies x =  \frac{7}{2} . \\  \\  \pink{ \boxed{ \boxed{ \tt \therefore x =  \frac{7}{2}  \:  \: or \:  \: 3.5 \: .}}}

Hence, it is solved.

Answered by Stylishboyyyyyyy
3

{\Large \underline{ \underline{ \mathfrak{Solution :  }}}} \\ \\   \sf Consider,  \:   \bigg({\frac{2}{5} \bigg)}^{2x - 2}  =  \frac{32}{3125}  \\ \:  \:  \:  \:  \:  \:  \:  \:   \sf \implies \bigg({\frac{2}{5} \bigg)}^{2x - 2}  =  \frac{ {2}^{5} }{ {5}^{5} }  \\ \\ \:  \:  \:  \:  \:  \:  \:  \:   \sf \implies \bigg({\frac{2}{5} \bigg)}^{2x - 2}  =  {\bigg( \frac{2}{5} \bigg)}^{5}  \\  \\  \sf On  \: Comparison  \: We  \: have, \\ \:  \:  \:  \:  \:  \:  \:   \sf \implies 2x - 2 = 5 \\ \:  \:  \:  \:  \:  \:  \:   \sf \implies 2x = 5 + 2 \\ \:  \:  \:  \:  \:  \:  \:   \sf \implies x =   \boxed{\frac{7}{2}}

 \sf  \large Checking:   \\  \\ \because  \sf \bigg({\frac{2}{5} \bigg)}^{2x - 2}  =  \frac{32}{3125}  \\  \sf  \therefore \bigg({\frac{2}{5} \bigg)}^{2  \times \frac{7}{2}  - 2}  =  \frac{32}{3125}  \\  \sf  \Rightarrow  \bigg({\frac{2}{5} \bigg)}^{7 - 2}  =  \frac{2 {}^{5} }{5 {}^{5} }  \\ \sf  \Rightarrow  \bigg({\frac{2}{5} \bigg)}^{5}  =  \bigg({\frac{2}{5} \bigg)}^{5} \\ \sf  \Rightarrow 5 = 5 \\  \\  \sf \underline{ \underline{ Hence  \: Checked !!!!}}

Similar questions