Math, asked by anilom2078, 2 months ago

solve it anybody who know​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Prove that,

\rm :\longmapsto\:\dfrac{ {tan}^{2}  \alpha }{ {cos}^{2}  \beta }  - \dfrac{ {tan}^{2}  \beta }{ {cos}^{2}  \alpha }  =  {tan}^{2} \alpha  -  {tan}^{2}  \beta

\large\underline{\sf{Solution-}}

Consider LHS,

\rm :\longmapsto\:\dfrac{ {tan}^{2}  \alpha }{ {cos}^{2}  \beta }  - \dfrac{ {tan}^{2}  \beta }{ {cos}^{2}  \alpha }

We know,

\boxed{ \rm{  \frac{1}{cosx} = secx}}

So, above expression can be rewritten as

\rm \:  =  \:  \:  {tan}^{2} \alpha   \: {sec}^{2}  \beta  -  {tan}^{2}  \beta   \:  {sec}^{2}  \alpha

We know,

\boxed{ \rm{  {sec}^{2}x = 1 +  {tan}^{2} x}}

So, using this we get

\rm \:  =  \:  \:  {tan}^{2} \alpha (1 +   \: {tan}^{2}  \beta ) -  {tan}^{2}  \beta (1 +   \:  {tan}^{2}  \alpha )

\rm \:  =  \:  \:  {tan}^{2} \alpha  \:  +   \: {tan}^{2} \alpha  \:   {tan}^{2}  \beta  -  {tan}^{2}  \beta  -  {tan}^{2}  \alpha \:  {tan}^{2}  \alpha )

\rm \:  =  \:  \:  {tan}^{2}  \alpha  \:  -  \:  {tan}^{2}  \beta

Hence, Proved

Additional Information :-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions