Math, asked by rahikaamber2145, 4 months ago

solve it correctly
Do answer if u know otherwise ignore it​

Attachments:

Answers

Answered by Anonymous
3

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

 \sf {a}^{2}  +  \frac{1}{ {a}^{2} } = 23

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

 \sf \: a +  \frac{1}{a}

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

  \\  \boxed { \bf \: ( {x + y)}^{2}  =  {x}^{2} +  {y}^{2}   + 2xy} \\  \\   \therefore \:  \bf \:  {x}^{2}  +  {y}^{2}  = ( {x + y)}^{2}  - 2xy \\  \\

Here ,

  • x = a

  • b = 1/a

Putting values , we get...

 \\  \sf \:  {a}^{2}  +  \frac{1}{ {a}^{2} }  = ( {a +  \frac{1}{a}) }^{2}  - 2( \cancel{a})( \frac{1}{ \cancel{a}} ) \\  \\  \\  \sf \: 23 = ( {a +  \frac{1}{a} )}^{2}  - 2 \\  \\  \\  \sf \: ( {a +  \frac{1}{a})  }^{2}  = 25 \\  \\  \bf \: taking \: square \: root.. \\  \\  \sf \: a +  \frac{1}{a}  =  \sqrt{25}  \\  \\  \\  \underline{ \boxed{ \sf \: \blue{a +  \frac{1}{a} = 5  }}}

 \\  \\

More identities :-

  • ( x - y )² = x² + y² - 2xy

  • ( x + y ) ( x - y ) = x² - y²

  • ( x + a ) ( x + b ) = x² + ( a + b )x + ab
Answered by xgen08
4

Answer:

cute DP...................<3

Similar questions