Math, asked by avinashmurmu99311, 10 months ago

solve it fast i ll mark brainliest​

Attachments:

Answers

Answered by amitkumar44481
12

To Prove :

 \tt\frac{1 + \cos \: A}{1 -  \cos \: A}  =  \frac{ { \tan }^{2}A}{ { (\sec A- 1) }^{2} }

Solution :

Let's try to Prove RHS = LHS.

Taking RHS

 \tt \dashrightarrow  \frac{ {\tan }^{2} A }{  { (\sec A - 1)}^{2} }

 \tt \dashrightarrow  \frac{ ( { \sec  }^{2}  A - 1) }{{(   \sec  A- 1 ) }^{2} }

 \tt \dashrightarrow \frac{( \sec  A + 1)( \sec  A - 1)}{( \sec  A -  1)( \sec a  - 1)}

 \tt \dashrightarrow   \frac{( \sec  A + 1)}{( \sec A  - 1)}

 \tt \dashrightarrow  \frac{ \frac{1 +  \cos A}{ \cos A} }{ \frac{1  -   \cos A}{ \cos A}}

 \tt \dashrightarrow \frac{1 +  \cos \: A}{1 -  \cos \: A}

Hence Proved.

Other method, Provide in attachment.

\rule{200}3

\boxed{\begin{minipage}{7 cm}Fundamental Trigonometric Identities \\ \\ $\sin^2\theta + \cos^2\theta=1 \\ \\ 1+\tan^2\theta = \sec^2\theta \\ \\ 1 + \cot^2\theta = \text{cosec}^2 \, \theta$</p><p>\end{minipage}}

Attachments:
Answered by Anonymous
24

SoluTion:

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Given Expression :

⠀⠀⠀⠀⠀

\sf{\dfrac{1\:+\:CosA}{1\:-\:CosA}\:=\:\dfrac{Tan^{2} A}{(SecA\:-\:1)^2}}

⠀⠀⠀⠀⠀

Taking RHS,

⠀⠀⠀⠀⠀

\sf{\dfrac{Tan^{2} A}{(SecA\:-\:1)^2}}

⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀

\large{\boxed{\red{\sf{Tan^{2} A\:=\:Sec^{2} A\:-\:1}}}}

⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{(Sec^{2} A\:-\:1)}{(SecA\:-\:1)(SecA\:-\:1)}}

⠀⠀⠀⠀⠀

We also know that,

⠀⠀⠀⠀⠀

\boxed{\green{\sf{(a^2\:-\:b^2\:)\:=\:(a\:+\:b)(a\:-\:b)}}}

⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{(SecA\:-\:1)(SecA\:+\:1)}{(SecA\:-\:1)(SecA\:-\:1)}}

⠀⠀⠀⠀⠀

Cancelling SecA - 1 from both numerator and denominator,

⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{SecA\:+\:1}{SecA\:-\:1}}

⠀⠀⠀⠀⠀

Converting sec into cos,

⠀⠀⠀⠀⠀

\longrightarrow \sf{\dfrac{ \dfrac{1}{cosA} \:  +  \:  \dfrac{cosA}{cosA} }{\dfrac{1}{cosA}  \:  -  \:  \dfrac{cosA}{cosA}  }}

⠀⠀⠀⠀⠀

Taking LCM, we get,

⠀⠀⠀⠀⠀

\longrightarrow \sf{\blue{\dfrac{1\:+\:CosA}{1\:-\:CosA}}}

⠀⠀⠀⠀⠀

\longrightarrow LHS

⠀⠀⠀⠀⠀

Hence Proved!

Similar questions