English, asked by lavina12388, 9 months ago

solve it fast it's urgent​

Attachments:

Answers

Answered by Anonymous
0

Question:

 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  = a + b \sqrt{5}

Answer:

Rationalize the denominator

 \frac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  \times  \frac{7 +  \sqrt{5} }{7 +  \sqrt{5} }

 \frac{ {(7 +  \sqrt{5} )}^{2} }{ {7}^{2} - {( \sqrt{5)} }^{2}  }

 \frac{49 + 5 + 2 \times 7 \times  \sqrt{5} }{49 - 5}

 \frac{54 + 14 \sqrt{5} }{44}

 \frac{54}{44}  +  \frac{14 \sqrt{5} }{44}

a =  \frac{54}{44}  =  \frac{27}{22}

b =  \frac{14 \sqrt{5} }{44}  =  \frac{7 \sqrt{5} }{22}

Similar questions