Solve it fast.
It's urgent.
Spammers stay away.
Answers
Answer:
the sum of lengths of any two sides in a triangle should be greater than the length of third side
Therefore,
In Δ AOB, AB < OA + OB (i)
In Δ BOC, BC < OB + OC (ii)
In Δ COD, CD < OC + OD (iii)
In Δ AOD, DA < OD + OA (iv)
⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD
⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)]
⇒ AB + BC + CD + DA < 2(AC + BD)
Hence, it is proved.
Step-by-step explanation:
Since, the sum of lengths of any two sides in a triangle should be greater than the length of third side. Therefore,
In Δ AOB,
AB < OA + OB ……….(i)
In Δ BOC,
BC < OB + OC ……….(ii)
In Δ COD,
CD < OC + OD ……….(iii)
In Δ AOD,
DA < OD + OA ……….(iv)
Adding (i), (ii) , (iii), (iv)
⇒ AB + BC + CD + DA < 2OA + 2OB + 2OC + 2OD
⇒ AB + BC + CD + DA < 2[(AO + OC) + (DO + OB)] ⇒ AB + BC + CD + DA < 2(AC + BD)
Hence, it is proved.
Hope you got your answer
Have a great day ahead
Take care..