solve it for 50 points spam will be reported
Attachments:
Answers
Answered by
7
Answer:
If sin θ + sin 2θ + sin 3θ = sin α and cos θ + cos 2θ + cos 3θ = cos α, then θ is equal to
1) α/2
2) α
3) 2α
4) α/6
Answer: (1) α/2
Solution:
Given,
sin θ + sin 2θ + sin 3θ = sin α
(sin 3θ + sin θ) + sin 2θ = sin α
2 sin(3θ + θ)/2 cos(3θ – θ)/2 = sin α
2 sin 2θ cos θ + sin 2θ = sin α
sin 2θ(2 cos θ + 1) = sin α….(i)
Also, given:
cos θ + cos 2θ + cos 3θ = cos α
(cos 3θ + cos θ) + cos 2θ = cos α
2 cos(3θ + θ)/2 cos(3θ – θ)/2 + cos 2θ = cos α
2 cos 2θ cos θ + cos 2θ = cos α
cos 2θ(2 cos θ + 1) = cos α….(ii)
Dividing (i) by (ii),
[sin 2θ(2 cos θ + 1)]/ [cos 2θ(2 cos θ + 1)] = sin α/cos α
tan 2θ = tan α
2θ = α
θ = α/2
❤
Answered by
11
Answer:
0=a/2 is write answer
Step-by-step explanation:
I hope this is helpful for you
Similar questions