Math, asked by symashah000, 1 month ago

Solve it guys please ​

Attachments:

Answers

Answered by rimikakv
1

Hope it help

Mark me brainliest :-)

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Given- }}

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{b}{c}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{ {(a + b)}^{2} }{ {b}^{2} }  = \dfrac{ {(b + c)}^{2} }{ {c}^{2} }

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{b}{c}

Let assume that

\rm :\longmapsto\:\dfrac{a}{b}  = \dfrac{b}{c}  = k

So,

\rm :\longmapsto\:b = ck

and

\rm :\longmapsto\:a = bk = ck \times k =  {ck}^{2}

Now,

Consider LHS

\rm :\longmapsto\:\dfrac{ {(a + b)}^{2} }{ {b}^{2} }

\rm \:  =  \:  \: \dfrac{ {( {ck}^{2}  + ck)}^{2} }{ {(ck)}^{2} }

\rm \:  =  \:  \: \dfrac{ {( {ck}(k + 1))}^{2} }{ {c}^{2}  {k}^{2} }

\rm \:  =  \:  \: \dfrac{  {c}^{2} {k}^{2}  {(k + 1)}^{2} }{ {c}^{2}  {k}^{2} }

\rm \:  =  \:  \:  {(k + 1)}^{2}

Now, Consider RHS

\rm :\longmapsto\:\dfrac{ {(b + c)}^{2} }{ {c}^{2} }

\rm \:  =  \:  \: \:\dfrac{ {(ck + c)}^{2} }{ {c}^{2} }

\rm \:  =  \:  \: \:\dfrac{ {(c(k + 1))}^{2} }{ {c}^{2} }

\rm \:  =  \:  \: \:\dfrac{ { {c}^{2} (k + 1)}^{2} }{ {c}^{2} }

\rm \:  =  \:  \:  {(k + 1)}^{2}

Thus,

\rm :\longmapsto\:\dfrac{ {(a + b)}^{2} }{ {b}^{2} }  = \dfrac{ {(b + c)}^{2} }{ {c}^{2} }

Additional Information :-

If a : b = c : d, then

\rm :\longmapsto\:\dfrac{a}{c}  = \dfrac{b}{d}  \: is \: called \: alternendo.

\rm :\longmapsto\:\dfrac{b}{a}  = \dfrac{d}{c}  \: is \: called \: invertendo.

\rm :\longmapsto\:\dfrac{a + b}{b}  = \dfrac{c + d}{d}  \: is \: called \: componendo.

\rm :\longmapsto\:\dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \: is \: called \: dividendo.

Similar questions