Math, asked by rohithkrhoypuc1, 4 days ago

Solve it.

[Hoping Answer from Taken name]​

Attachments:

Answers

Answered by shivam24404sharma
0

Answer:

10

Step-by-step explanation:

1+2-3+4+4+2

=10

HOPE IT HELP U

Answered by mathdude500
5

 \green{\large\underline{\sf{Solution-}}}

Given matrix is

\rm :\longmapsto\:A = \begin{gathered}\sf \left[\begin{array}{ccc}1&2& - 3\\ - 3&2&4\\ 6&8&4\end{array}\right]\end{gathered}

Now,

\red{\rm :\longmapsto\:A_{11} =  {( - 1)}^{1 + 1}\begin{array}{|cc|}\sf 2 &\sf 4  \\ \sf 8 &\sf 4 \\\end{array} = 8 - 32 =  - 24 \: }

\green{\rm :\longmapsto\:A_{12} =  {( - 1)}^{1 + 2}\begin{array}{|cc|}\sf  - 3 &\sf 4  \\ \sf 6 &\sf 4 \\\end{array} = - ( - 12 - 24) = 36 \: }

\blue{\rm :\longmapsto\:A_{13} =  {( - 1)}^{1 + 3}\begin{array}{|cc|}\sf  - 3 &\sf 2  \\ \sf 6 &\sf 8 \\\end{array} =  - 24 - 12 =  -36 \: }

\purple{\rm :\longmapsto\:A_{22} =  {( - 1)}^{2 + 2}\begin{array}{|cc|}\sf 1 &\sf  - 3  \\ \sf 6 &\sf 4 \\\end{array} = 4 + 18 =22\: }

\pink{\rm :\longmapsto\:A_{33} =  {( - 1)}^{3 + 3}\begin{array}{|cc|}\sf 1 &\sf 2  \\ \sf  - 3 &\sf 2 \\\end{array} = 2 + 6 =8\: }

\pink{\rm :\longmapsto\:A_{23} =  {( - 1)}^{2+ 3}\begin{array}{|cc|}\sf 1 &\sf 2  \\ \sf 6 &\sf 8 \\\end{array} =  - (8 - 12) =4\: }

Now, Consider

\rm :\longmapsto\:A_{11} + A_{12} + A_{13} + A_{22} + A_{33} + A_{23}

\rm \:  =  \:  - 24 + 36 - 36 + 22 + 8 + 4

\rm \:  =  \: 10

Hence,

\boxed{ \tt{ \: \:A_{11} + A_{12} + A_{13} + A_{22} + A_{33} + A_{23} = 10 \:  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{ \tt{ \: a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23} = 0}}

\boxed{ \tt{ \: a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} =  |A| }}

\boxed{ \tt{ \: a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} =  |A| }}

\boxed{ \tt{ \: a_{31}A_{31} + a_{32}A_{32} + a_{33}A_{33} =  |A| }}

\boxed{ \tt{ \: A_{ij} \:  =  \:  {( - 1)}^{i \:  +  \: j}  \: m_{ij} \: }}

Similar questions