Solve it If ( x + iy)⅓ = a + ib ( x , y , a , b £ R )Show that x/a + y/b = 4 (a² - b²)
Answers
Answered by
52
_______________________________________________________________
Given that ,
=> x + iy = a³ + 3a²ib + 3a i²b² + i³b³
=> x + iy = ( a³ - 3ab²) + i (3a²b - b³)
•°• x/a = a² - 3b² and y/b = 3a² - b²
→› x/a + y/b = a² - 3b² + 3a² - b²
→› x/a + y/b = 4a² - 4b²
=> 4 ( a² - b²)
Hence Proved!!
____________________________________________________________
Hritu76:
....Tysm
Answered by
4
Hello!
( x + iy)^1/3 = (a + ib)
So cubing both the sides
( x + iy) = (a+ib)³
( x + iy) = a³ + i³b³ + 3a²ib + 3ai²b²
Then You can separate the real and imaginary parts
x = a³ - 3ab²
y = b³ + 3a²b
Put the values x/a + y/b
= 4a² - 4b²
= 4 (a² - b²)
Hope it the the correct answer friend.☺
( x + iy)^1/3 = (a + ib)
So cubing both the sides
( x + iy) = (a+ib)³
( x + iy) = a³ + i³b³ + 3a²ib + 3ai²b²
Then You can separate the real and imaginary parts
x = a³ - 3ab²
y = b³ + 3a²b
Put the values x/a + y/b
= 4a² - 4b²
= 4 (a² - b²)
Hope it the the correct answer friend.☺
Similar questions