Math, asked by chinmayihare16, 4 months ago

solve it in detail
Find the value of x​

Attachments:

Answers

Answered by StormEyes
0

\sf \Large Solution!!

\sf Let\:\dfrac{12x^{2}+18x+42}{18x^{2}+12x+58}=\dfrac{2x+3}{3x+2}=A\dots (i)

Multiply the numerator and denominator of second ratio by 6x.

\sf \to A=\dfrac{12x^{2}+18x+42}{18x^{2}+12x+58}=\dfrac{6x(2x+3)}{6x(3x+2)}

\sf \to A=\dfrac{12x^{2}+18x+42}{18x^{2}+12x+58}=\dfrac{12x^{2}+18x}{18x^{2}+12x}

Theorem on equal ratios.

\sf \to A=\dfrac{(12x^{2}+18x+42)-(12x^{2}+18x)}{(18x^{2}+12x+58)-(18x^{2}+12x)}

\sf \to A=\dfrac{\cancel{12x^{2}}\cancel{+18x}+42\cancel{-12x^{2}}\cancel{-18x}}{\cancel{18x^{2}}\cancel{+12x}+58\cancel{-18x^{2}}\cancel{-12x}}

\sf \to A=\dfrac{42}{58}=\dfrac{21}{29}

From (i)

\sf \to \dfrac{2x+3}{3x+2}=A

\sf \to \dfrac{2x+3}{3x+2}=\dfrac{21}{29}

Cross-multiplication.

\sf \to 29(2x+3)=21(3x+2)

\sf \to 58x+87=63x+42

\sf \to 58x-63x=42-87

\sf \to \cancel -5x=\cancel -45

\sf \to x=\dfrac{45}{5}

\sf \to x=9

Similar questions