Math, asked by arifulislam14bdru, 9 months ago

solve it in details, 3.2^n-4.2^n-2/2^n-2^n+1​

Answers

Answered by romeo161
0

Step-by-step explanation:

•\normalsize\textsf{\underline{As, \: we \: know:-}}

As, we know:-

\normalsize\sf{If \: a \: polynomial \: is \: in \: the \: form \: of \: ax^2 + bx +c \: then,}Ifapolynomialisintheformofax

2

+bx+cthen,

\star⋆ \normalsize\sf{ Sum \: of \: roots \: = \: \frac{-b}{a} \: = \: \frac{-(Coefficient \: of \: x)}{Coefficient \: of \: x^2} }Sumofroots=

a

−b

=

Coefficientofx

2

−(Coefficientofx)

\star⋆ \normalsize\sf{ Product \: of \: roots \: = \: \frac{c}{a} \: = \: \frac{Constant \: term}{Coefficient \: of \: x^2} }Productofroots=

a

c

=

Coefficientofx

2

Constantterm

•\normalsize\textsf{\underline{Now; \: from \: given \: polynomial :-}}

Now; from given polynomial :-

\star⋆ \normalsize\sf{ \: a \: = \: 1}a=1

\star⋆ \normalsize\sf{ \: b \: = \: -7}b=−7

\star⋆ \normalsize\sf{ \: c \: = \: k}c=k

•\normalsize\textsf{\underline{Sum \: of \: products \: (from \: polynomial):-}}

Sum of products (from polynomial):-

➠\normalsize\sf{ a \: + \: b \: = \: \frac{-(-7)}{1} \: = \: 7}a+b=

1

−(−7)

=7

➠{\boxed{\sf{ a \: + \: b \: = \: 7 \: \: \: \: \: ----(eq.1)}}}

a+b=7−−−−(eq.1)

•\normalsize\textsf{\underline{ Product \: of \: roots \: (from \:polynomial):-}}

Product of roots (from polynomial):-

➠\normalsize\sf{ ab \: = \: \frac{k}{1} }ab=

1

k

➠{\boxed{\sf{ ab \: = \: k \: \: \: \: \: -----(eq.2)}}}

ab=k−−−−−(eq.2)

•\normalsize\textsf{\underline{ Also ; \: it \: is \: given \: that:-}}

Also ; it is given that:-

➠{\boxed{\sf{ a \: - \: b \: = \: 1 \: \: \: \: -----(eq.3)}}}

a−b=1−−−−−(eq.3)

•\normalsize\textsf{\underline{ Adding \: equation \: 1 \: and \: 2:-}}

Adding equation 1 and 2:-

\normalsize\sf{ \: \: \: \: \: \: \: \: \: \: \: a \: + \: \cancel{b} \: = \: 7}a+

b

=7

\normalsize\sf{\: \: \: \: \: \: \: \: \: \: a \: - \: \cancel{b} \: = \: 1}a−

b

=1

\normalsize\sf{ \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: 2a \: = \: 8}2a=8

➠\normalsize\sf{ a \: = \:\cancel{\frac{8}{2} } }a=

2

8

➠\normalsize\sf{ a \: = \: 4}a=4

➠\large{\boxed{\sf{ a \: = \: 4}}}

a=4

•\normalsize\textsf{\underline{Now; \: put \: the \: value \: in \: equation \: 1:-}}

Now; put the value in equation 1:-

➠\normalsize\sf{ a \: + \: b \: = \: 7}a+b=7

➠\normalsize\sf{ 4 \: + \: b \: = \: 7}4+b=7

➠\normalsize\sf{ b \: = \: 7 \: - \: 4 \: = \: 3}b=7−4=3

➠\large{\boxed{\sf{ b \: = \: 3}}}

b=3

•\normalsize\textsf{\underline{Put \: values \: of \: a \: and \: b \: in \: eq.3:-}}

Put values of a and b in eq.3:-

➠\normalsize\sf{ ab \: = \: k}ab=k

➠\normalsize\sf{ 4 \times\ 3 \: = \: k }4× 3=k

➠\normalsize\sf{ 12 \: = \: k}12=k

➠\normalsize\sf{ k \: = \: 12}k=12

➠\LARGE{\boxed{\sf \orange{ Value \: of \: k \: is \: 12}}}

Valueofkis12

Similar questions