Math, asked by bhumika1119, 3 months ago

solve it out ASAP
this is a que from rd sharma

Attachments:

Answers

Answered by an4563781
0

Answer:

okkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Answered by Anonymous
1

 \\  \\  \frac{1}{3 -  \sqrt{8} }  -  \frac{1}{ \sqrt{8}  -  \sqrt{7} }  +  \frac{1}{ \sqrt{7}  -  \sqrt{6} }  -  \frac{1}{ \sqrt{6}  -  \sqrt{5} }  +  \frac{1}{ \sqrt{5} -  2}  \\  \\  \\  \implies \frac{3  +   \sqrt{8} }{(3 -  \sqrt{8} )(3 +  \sqrt{8}) }   -  \frac{ \sqrt{8}  +  \sqrt{7}  }{( \sqrt{8}  +  \sqrt{7} )( \sqrt{8} -  \sqrt{7} ) }  +  \frac{ \sqrt{7} +  \sqrt{6}  }{( \sqrt{7}  +  \sqrt{6} )( \sqrt{7} -  \sqrt{6} ) }  -  \frac{ \sqrt{6} +  \sqrt{5}  }{( \sqrt{6}  -  \sqrt{5} )( \sqrt{6}  +  \sqrt{5}) }  +  \frac{ \sqrt{5} +  \sqrt{4}  }{( \sqrt{5}  +  \sqrt{4} )( \sqrt{5} -  \sqrt{4} ) }  \\  \\  \\  \implies  \sqrt{9}  +  \sqrt{8}  -  \sqrt{8}  -  \sqrt{7}   + \sqrt{7}  +  \sqrt{6}  -  \sqrt{6}  -  \sqrt{5}  +  \sqrt{5}  +  \sqrt{4}  \\  \\  \\  \implies \sqrt{9}  +   \cancel{\sqrt{8}}  -  \cancel{ \sqrt{8}}  -  \cancel{ \sqrt{7}}   + \cancel{ \sqrt{7} } + \cancel{  \sqrt{6} } -   \cancel{\sqrt{6}}  -   \cancel{\sqrt{5} } +  \cancel{ \sqrt{5} } +  \sqrt{4}  \\  \\  \\ \Large \therefore  \:  \:  \rightsquigarrow \:\: \bf  5 \:  \:  \:  \:  \:  \: ans.

Similar questions