Math, asked by brainlymember2008, 11 months ago

solve it please?????​

Attachments:

Answers

Answered by BrainlyConqueror0901
52

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{n=2}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies  {25}^{n - 1}   + 100 =  {5}^{2n - 1}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies n = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {25}^{n - 1}  + 100 =  {5}^{2n - 1}  \\  \\ \tt:  \implies  100 =  {5}^{2n - 1}   -  {25}^{n - 1}  \\  \\ \tt:  \implies  {5}^{2n - 1}  -  {25}^{n - 1}  =  100 \\  \\ \tt:  \implies  {5}^{2n}  \times  {5}^{ - 1}  -  {25}^{n}  \times  {25}^{ - 1}  = 100 \\  \\ \tt:  \implies  ({5}^{2} ) ^{n}  \times  \frac{1}{5}   -  {25}^{n}  \times   \frac{1}{25}   = 100 \\  \\ \tt:  \implies   \frac{ {25}^{n} }{5}  -  \frac{ {25}^{n} }{25}  = 100 \\  \\ \tt:  \implies  \frac{5 \times {25}^{n}  -  {25}^{n} }{25}  = 100 \\  \\ \tt:  \implies   {25}^{n} (5 - 1) = 100 \times 25 \\  \\ \tt:  \implies  {25}^{n}  \times 4 =2500 \\  \\ \tt:  \implies   {25}^{n}  =  \frac{2500}{4}  \\  \\ \tt:  \implies  {25}^{n}  = 625 \\  \\ \tt:  \implies  {25}^{n}  =  {25}^{2}  \\  \\  \green{\tt:  \implies n = 2}

Answered by AdorableMe
97

Given :-

\tt{25^n^-^1+100=5^2^n^-^1}

To find :-

The value of 'n'.

Solution :-

\displaystyle{\tt{5^{2n-2}+100=5^{2n-1}}}\\\\\displaystyle{\tt{\implies \frac{5^{2n-1}}{5}+100=5^{2n-1}} }\\\\\displaystyle{\texttt{Let }}5^{2n-1}\texttt{ be x.}\\\\\displaystyle{\tt{\implies \frac{x}{5}+100=x }}\\\\\displaystyle{\tt{\implies 100=x-\frac{x}{5} }}\\\\\displaystyle{\tt{\implies 100=\frac{4x}{5} }}\\\\\displaystyle{\tt{\implies x=\frac{500}{4}=125 }}

\tt{Now,}\\\\\displaystyle{\tt{5^{2n-1}=125}}\\\\\displaystyle{\tt{\implies 5^{2n-1}=5^3}}\\\\\displaystyle{\tt{\implies 2n-1=3}}\\\\\tt{As\ the\ base\ is\ same\ in\ both\ the\ sides\ i.e.\ 5.}\\\\\displaystyle{\tt{n=\frac{3+1}{2} }}\\\displaystyle{\tt{\boxed{\implies n=2}}}\\

Similar questions