Math, asked by sahilavy, 1 year ago

solve it please
2^40 + 2^39 + 2^38
___________________
2^41+ 2^40 _ 2^39

Answers

Answered by MOSFET01
0
Let we consider that in denominator \bold{2^{41}\: +\: 2^{40} \:-\:2^{39}}.

\bold{\underline{\underline{Solution\: \colon}}}

\bold{\dfrac{2^{40} \: + \: 2^{39} \: + \: 2^{38}}{2^{41} \: + \: 2^{40} \: - \: 2^{39}}}

\bold{\implies\dfrac{2^{38}[2^{2}\: + \: 2 \: + \: 1]}{2^{39}[2^{2} \: + \: 2 \: - \: 1]}}

\bold{\implies \dfrac{ [4 \: + \: 2 \: + \: 1]}{(2)[4\: + \: 2 \: -\: 1]}}

\bold{\implies \dfrac{1[7]}{2[5]}}

\bold{\implies\dfrac{7}{10}}

Decimal value \bold{\boxed{0.7}}

OR

Let we consider that in denominator \bold{2^{41}\: +\: 2^{40} \:+\:2^{39}}.

\bold{\underline{\underline{Solution\: \colon}}}

\bold{\dfrac{2^{40} \: + \: 2^{39} \: + \: 2^{38}}{2^{41} \: + \: 2^{40} \: + \: 2^{39}}}

\bold{\implies\dfrac{2^{38}[2^{2}\: + \: 2 \: + \: 1]}{2^{39}[2^{2} \: + \: 2 \: + \: 1]}}

\bold{\implies \dfrac{ [4 \: + \: 2 \: + \: 1]}{(2)[4\: + \: 2 \: +\: 1]}}

\bold{\implies \dfrac{1[7]}{2[7]}}

\bold{\implies\dfrac{1}{2}}

Decimal value \bold{\boxed{0.5}}

These cases are due to your inappropriate symbol in a \bold{denominator}

\bold{\large{Thanks}}
Similar questions