Math, asked by leenapaulkejriwal, 2 days ago

solve it
plsssssssss

Attachments:

Answers

Answered by senboni123456
1

Answer:

Step-by-step explanation:

We have,

\bb{A=\left[\begin{array}{cc}1&9\\0&\dfrac{1}{4}\end{array}\right] \,\,and\,\,\,}\bb{B=\left[\begin{array}{cc}2&x\\0&1\end{array}\right] }

Now,

\bb{4A=4\left[\begin{array}{cc}1&9\\0&\dfrac{1}{4}\end{array}\right] =\left[\begin{array}{cc}4&36\\0&1\end{array}\right] }

And,

\bb{B^2=\left[\begin{array}{cc}2&x\\0&1\end{array}\right]\cdot\left[\begin{array}{cc}2&x\\0&1\end{array}\right] }

\bb{\implies\,B^2=\left[\begin{array}{cc}(2)(2)+(x)(0)&(2)(x)+(2)(1)\\\\(0)(2)+(0)(1)&(0)(x)+(1)(1)\end{array}\right]}

\bb{\implies\,B^2=\left[\begin{array}{cc}4&2x+2\\0&1\end{array}\right]}

According to the given condition,

\sf{\red{4A=B^2}}

\sf{\implies\left[\begin{array}{cc}4&36\\0&1\end{array}\right]=\left[\begin{array}{cc}4&2x+2\\0&1\end{array}\right]}

On comparing, we get,

\sf{2x+2=36}

\sf{\implies\,2x=36-2}

\sf{\implies\,2x=34}

\sf{\implies\,x=17}

Similar questions