Math, asked by mahtopiyush2020, 5 months ago

solve it plzz..... ​

Attachments:

Answers

Answered by nisturvittal
0

Answer:

I think it is x=0another x is 6

0-1/6=5

Step-by-step explanation:

6minus into 0 =6 6 minus 1 =5

Answered by varadad25
3

Question:

If \displaystyle{\sf\:x\:-\:\dfrac{1}{x}\:=\:5}, find the value of

\displaystyle{\sf\:1\:.\:x^2\:+\:\dfrac{1}{x^2}}

\displaystyle{\sf\:2\:.\:x^4\:+\:\dfrac{1}{x^4}}

Answer:

1. \displaystyle{\boxed{\red{\sf\:x^2\:+\:\dfrac{1}{x^2}\:=\:27}}}

2. \displaystyle{\boxed{\red{\sf\:x^4\:+\:\dfrac{1}{x^4}\:=\:727}}}

Step-by-step-explanation:

We have given that,

\displaystyle{\sf\:x\:-\:\dfrac{1}{x}\:=\:5}

We have to find the value of,

\displaystyle{\sf\:1\:.\:x^2\:+\:\dfrac{1}{x^2}}

\displaystyle{\sf\:2\:.\:x^4\:+\:\dfrac{1}{x^4}}

1.

Now,

\displaystyle{\sf\:x\:-\:\dfrac{1}{x}\:=\:5}

\displaystyle{\implies\sf\:\left(\:x\:-\:\dfrac{1}{x}\:\right)^2\:=\:(\:5\:)^2\:\:\:-\:-\:-\:[\:Squaring\:both\:sides\:]}

\displaystyle{\implies\sf\:x^2\:-\:2\:\times\:\cancel{x}\:\times\:\dfrac{1}{\cancel{x}}\:+\:\left(\:\dfrac{1}{x}\:\right)^2\:=\:25\:\:\:-\:-\:-\:[\:\because\:(\:a\:-\:b\:)^2\:=\:a^2\:-\:2ab\:+\:b^2\:]}

\displaystyle{\implies\sf\:x^2\:-\:2\:+\:\dfrac{1}{x^2}\:=\:25}

\displaystyle{\implies\sf\:x^2\:+\:\dfrac{1}{x^2}\:=\:25\:+\:2}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x^2\:+\:\dfrac{1}{x^2}\:=\:27}}}}

────────────────────────

2.

Now, we have

\displaystyle{\sf\:x^2\:+\:\dfrac{1}{x^2}\:=\:27}

\displaystyle{\implies\sf\:\left(\:x^2\:+\:\dfrac{1}{x^2}\:\right)^2\:=\:(\:27\:)^2\:\:\:-\:-\:-\:[\:Squaring\:both\:sides\:]}

\displaystyle{\implies}\sf\:(\:x^2\:)^2\:+\:2\:\times\:\cancel{x^2}\:\times\:\dfrac{1}{\cancel{x^2}}\:+\:\left(\:\dfrac{1}{x^2}\:\right)^2\:=\:27\:\times\:27\:\:\:-\:-\:-\:[\:\because\:(\:a\:+\:b\:)^2\:=\:a^2\:+\:2ab\:+\:b^2\:]

\displaystyle{\implies\sf\:x^2\:\times\:x^2\:+\:2\:+\:\left(\:\dfrac{1}{x^2\:\times\:x^2}\:\right)\:=\:729}

\displaystyle{\implies\sf\:x^{2\:+\:2}\:+\:2\:+\:\left(\:\dfrac{1}{x^{2\:+\:2}}\:\right)\:=\:729\:\:\:-\:-\:-\:[\:\because\:a^m\:\times\:a^n\:=\:a^{m\:+\:n}\:]}

\displaystyle{\implies\sf\:x^4\:+\:2\:+\:\dfrac{1}{x^4}\:=\:729}

\displaystyle{\implies\sf\:x^4\:+\:\dfrac{1}{x^4}\:=\:729\:-\:2}

\displaystyle{\implies\underline{\boxed{\red{\sf\:x^4\:+\:\dfrac{1}{x^4}\:=\:727}}}}

Similar questions