Math, asked by Anonymous, 1 year ago

solve it plzz no spam​

Attachments:

Answers

Answered by pk515494
7

Step-by-step explanation:

given \:  \alpha  +  \beta  = 90 \\ taking \: cos \: of \: both \: sides \\  \cos( \alpha  +  \beta )  =  \cos(90)  \\  \cos( \alpha )  \cos( \beta )  -  \sin( \alpha )  \sin( \beta )  = 0 \\  \cos( \alpha  ) \cos( \beta )  =  \sin( \alpha )  \sin( \beta )  \\  \cos( \alpha  )  =  \frac{ \sin( \alpha )  \sin( \beta ) }{ \cos( \beta ) }  \\ on \: putting \: this \: value \: in \: lhs \\  \sqrt{ \frac{ \sin( \alpha )  \sin( \beta ) }{ \cos( \beta )  } \times  \csc( \beta ) -   \frac{ \sin( \alpha ) \sin( \beta )  }{ \cos( \beta ) } \times  \sin( \beta )    }  \\  \sqrt{ \frac{ \sin( \alpha ) \sin( \beta )  }{ \cos( \beta ) } \times  \frac{1}{ \sin( \beta ) }  -  \frac{ \sin( \alpha )  { \sin( \beta ) }^{2}   }{ \cos( \beta ) }  }  \\  \sqrt{ \frac{ \sin( \beta ) }{ \cos( \beta ) } -  \frac{ \sin( \alpha )   { \sin( \beta ) }^{2} }{ \cos( \beta ) }  }  \\  \sqrt{ \frac{ \sin( \beta )  -  \sin( \alpha ) { \sin( \beta ) }^{2}  }{ \cos( \beta ) } }  \\  \sqrt{ \frac{ \sin( \beta ) (}{?} }

Answered by Anonymous
6

givn

 \alpha  +  \beta  = 90

to \: prove

 \sqrt{ \cos( \alpha )   \ \csc( \beta )   -  \cos( \alpha )   \ \sin ( \beta ) }  =  \sin( \alpha )

from \: above \:

 \alpha  = 90 -  \beta

and

 \beta   = 90 -  \alpha

lhs

 \sqrt{ \cos( \alpha )  \ \csc ( \beta )  -  \cos( \alpha )  \sin( \beta )  }

putting \: the \: above \: value \:   \alpha   = 90 -   \beta

 \sqrt{ \cos( \alpha )  \csc(( 90 - \alpha )  -  \cos( \alpha )   \sin (90 -  \alpha )   }

 \sqrt{ \cos( \alpha ) \sec( \beta )  -   \cos( \alpha )     \cos( \alpha )   }

 \sqrt{1  -   \cos ^{2}  \alpha  }

 \sqrt{ \sin^{2 }   \alpha }

 \sin( \alpha )

hence \: lhs = rhs

proved

Similar questions