Math, asked by meenagotiwale, 2 months ago

solve it send it fast ​

Attachments:

Answers

Answered by 12thpáìn
10

Question

\Rightarrow \sf \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1} }  = 7

Answer= 19

Step by step explanation

\Rightarrow \sf \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1} }  = 7

{\Rightarrow\sf \dfrac{ (\sqrt{x + 13}  +  \sqrt{x - 1} )(\sqrt{x + 13}  +  \sqrt{x - 1} )}{ (\sqrt{x + 13} -  \sqrt{x - 1} )(\sqrt{x + 13}  +  \sqrt{x - 1} )}  = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{1 + 1} }{  \sqrt{x + 13} \times  \sqrt{x + 13}  + \sqrt{x + 13}  \times  \sqrt{x - 1}  -   \sqrt{x - 1}   \times  \sqrt{x + 13}  -  \sqrt{x - 1}  \times  \sqrt{x - 1}   } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{  \sqrt{(x + 13)   (x + 13) } + \sqrt{(x + 13)  {(x - 1)}}  -   \sqrt{(x - 1)  (x + 13)}  -  \sqrt{(x - 1)  (x - 1) } } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{  \sqrt{(x + 13) ^{2}  } + \sqrt{(x + 13)  {(x - 1)}}  -   \sqrt{(x - 1)  (x + 13)}  -  \sqrt{(x - 1) ^{2} } } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{ {(x + 13)} + \sqrt{(x + 13)  {(x - 1)}}  -   \sqrt{(x - 1)  (x + 13)}  -  (x - 1)  } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{  {(x + 13) ^{ \frac{2}{2} }  } + \sqrt{(x + 13)  {(x - 1)}}  -   \sqrt{(x - 1)  (x + 13)}  -  (x - 1) ^{ \frac{2}{2} }  } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{ {(x + 13)} + \sqrt{(x + 13)  {(x - 1)}}  -   \sqrt{(x  +  13)  (x  - 1)}  -  (x - 1)  } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{ {(x + 13)}  \cancel{+ \sqrt{(x + 13)  {(x - 1)}}}  \cancel {-   \sqrt{(x - 1)  (x + 13)} } -  (x - 1)  } = 7  }

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{ {(x + 13)} {-  (x - 1)  }}} = 7

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{ {x + 13} { - x + 1  }}} = 7

{\Rightarrow\sf \dfrac{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} }{14}} = 7

{\Rightarrow\sf (\sqrt{x + 13}  +  \sqrt{x - 1} )^{2} } =98

{\Rightarrow\sf  \{(\sqrt{x + 13}  +  \sqrt{x - 1} )^{2}  \} ^{ \frac{1}{2} }   =98 ^{ \frac{1}{2} } }

{\Rightarrow\sf  (\sqrt{x + 13}  +  \sqrt{x - 1} ) \ ^{ 2 \times \frac{1}{2} }   =(2 \times 7^{2}  )^{ \frac{1}{2} } }

{\Rightarrow\sf  \sqrt{x + 13}  +  \sqrt{x - 1} )   =2 ^{ \frac{1}{2} }  \times 7 }

{\Rightarrow\sf  \sqrt{x + 13}  +  \sqrt{x - 1}    =7 \times 2 ^{ \frac{1}{2} }   }

{\Rightarrow\sf  (\sqrt{x + 13}  +  \sqrt{x - 1} ) + ( -  \sqrt{x - 1})   =7 \times 2 ^{ \frac{1}{2} }  + ( -  \sqrt{x - 1} )  }

{\Rightarrow\sf  (\sqrt{x + 13}) ^{2}   =(7 \times 2 ^{ \frac{1}{2} }  -  \sqrt{x - 1} )  ^{2}   }

{\Rightarrow\sf  x + 13 =(7 \times 2 ^{ \frac{1}{2} }  -  \sqrt{x - 1} )  ^{2}   }

{\Rightarrow}\sf  x + 13   =(7 \times 2 ^{ \frac{1}{2} } )^{2}  + 2 \times 7 \times 2 ^{ \frac{1}{2} } ( -  \sqrt{x - 1} ) + ( -  \sqrt{x - 1} ) ^{2}

{\Rightarrow}\sf  x + 13   =49  \times 2 ^{ \frac{2}{2} }   -  14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}  + (x - 1) { }^{ \frac{2}{2} }

{\Rightarrow}\sf  x + 13   =98 -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}  + x - 1

{\Rightarrow}\sf  x + 13   = -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}  + x + 98 - 1

{\Rightarrow}\sf \cancel{  x} + 13   = -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}  + \cancel{ x} + 97

{\Rightarrow}\sf   13 -97   = -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}  + 97 - 97

{\Rightarrow}\sf    - 84   = -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1}

{\Rightarrow}\sf    (- 84) {}^{2}    =( -   14 \times 2 ^{ \frac{1}{2} }  \times   \sqrt{x - 1} ) {}^{2}

{\Rightarrow}\sf    (- 84)^{2}    =   14  ^{2}  \times (2  ^{ \frac{1}{2} }   ) ^{2} \times   (\sqrt{x - 1} ) {}^{2}

{\Rightarrow}\sf    (- 84)^{2}    =   14  ^{2}  \times 2(   x - 1)

{\Rightarrow}\sf    (- 84)^{2}    =   (14  ^{2}  \times 2)(   x - 1)

{\Rightarrow}\sf    (- 84)^{2}    =   14  ^{2}     \times   2x  + 14^{2}  \times 2( - 1)

{\Rightarrow}\sf    7056  =   392x   -  392

{\Rightarrow}\sf    7056 + 392  =   392x

{\Rightarrow}\sf    7448 =   392x

{\Rightarrow}\sf    x =  \frac{7448}{392}

\gray{\sf  ~~~  x =  19}

Solution check follows.

  • If you wish to see whether any invalid solutions have been removed, please scroll to the bottom of the page

  • \Rightarrow \sf \dfrac{ \sqrt{x + 13}  +  \sqrt{x - 1} }{ \sqrt{x + 13} -  \sqrt{x - 1} }  = 7

  • \Rightarrow \sf \dfrac{ \sqrt{19+13}  +  \sqrt{19- 1} }{ \sqrt{19 + 13} -  \sqrt{19 - 1} }  = 7

  • \Rightarrow \sf \dfrac{ \sqrt{32}  +  \sqrt{18} }{ \sqrt{32} -  \sqrt{18} }  = 7

  • \Rightarrow \sf \dfrac{ 4√2  + 3√2}{ 4√2 -  3√2 }  = 7

  • \Rightarrow \sf \dfrac{ 4 + 3}{ 4-  3 }  = 7

  • \Rightarrow \sf 7= 7

  • \Rightarrow \sf 0= 0

X=19

Answered by Itzreena
7

\huge\mathfrak\color{cyan}I\:hope\:it\:helps\:you.

Attachments:
Similar questions