Math, asked by Anonymous, 4 months ago

solve it !Solve this............................solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it solve it​​

Attachments:

Answers

Answered by hotcupid16
8

Given,

\longrightarrow\left|\begin{array}{ccc}x+2&x+6&x-1\\x+6&x-1&x+2\\x-1&x+2&x+6\end{array}\right|=0

Performing R_1\to R_1-R_3 and R_2\to R_2-R_3,

\longrightarrow\left|\begin{array}{ccc}3&4&-7\\7&-3& -4\\x-1&x+2&x+6\end{array}\right|=0

Performing C_1\to C_1+C_2+C_3,

\longrightarrow\left|\begin{array}{ccc}0&4&-7\\0&-3&-4\\3x+7&x+2&x+6 \end{array}\right|=0

Expanding along C_1,

\longrightarrow(3x+7)(-16-21)=0

Anyways,

\longrightarrow3x+7=0

\longrightarrow\underline{\underline{x=-\dfrac{7}{3}}}

Answered by Anonymous
3

Given :

Area of rhombus = 120 cm²

Length of diagonal = 8 cm

To find :

Length of another diagonal

According to the question,

\sf{ :  \implies Area \: of \: rhombus =  \dfrac{1}{2}  \times d _{1} \times d_{2}   }

 \\

 \sf  : \implies{ {120 \: cm}^{2} =  \dfrac{1}{2}   \times 8 \: cm \times x}

 \\

 \sf :  \implies{ {120 \: cm}^{2} \times 2 = 8 \: cm \times x }

 \\

 \sf :  \implies{ {240 \: cm}^{2}  = 8 \: cm \times x}

 \\

 \sf  : \implies{ \dfrac{240}{8}  \: cm = x}

 \\

 { \underline{ \boxed{  \sf  \pink{ :  \implies{   \bm3 \bm0 \: c m =x}}}}}

{ \therefore{ \underline{\sf{So \:,the \:  length \:  of \:  other \:  diagonal  \: is \:    3 0 \: cm}}}}

Similar questions