Math, asked by ʙʀᴀɪɴʟʏᴡɪᴛᴄh, 4 months ago

Solve it⤵

tan(65-θ) - cot(25+θ) = tan{90-(25+θ)}

  \Rightarrow Also tell value of tan{90-(25+θ)}​

Answers

Answered by Manash2243
9

Therefore, this should be calculated by = { As we know, Tan θ = Cot ( 90 - θ ) , so :- }We get, Tan [ 90 - ( 65 + θ ) ] - Cot ( 25 - θ ) Cot [ 25 - θ ] - Cot ( 25 - θ)= 0.

Hope..this answer may help you..plz..mark it as brainlist....

Answered by Anonymous
14

  \large\boxed{  \underline{\underline{ \blue{   \sf{question : }}}}}

 \sf{tan (65 \degree -  \theta) - cot(25 \degree +  \theta) = tan(90 \degree - (25 \degree +  \theta))}

  \large\boxed{  \underline{\underline{ \blue{   \sf{formulae : }}}}}

 \sf{tan \:  \theta =cot(90 \degree -  \theta) } \\ \sf{ cot  \: \theta = tan (90 \degree -  \theta)}

   \large\boxed{  \underline{\underline{ \blue{   \sf{solution : }}}}}

 \sf{tan (65 \degree -  \theta) - cot(25 \degree +  \theta) = tan(90 \degree - (25 \degree +  \theta))} \\  \sf{tan(65 \degree -  \theta) - tan(90 \degree - (25 \degree +  \theta)} = tan(90 \degree - ( 25  \degree +  \theta)) \\   \sf{tan(65 \degree -  \theta) - tan(90 \degree - 25 \degree  -  \theta)} = tan(90 \degree - ( 25  \degree +  \theta)) \\   \sf{tan(65 \degree -  \theta) - tan(65 \degree  -   \theta)} = tan(90 \degree - ( 25  \degree +  \theta)) \\ \sf{ \cancel{tan(65 \degree -  \theta)} -  \cancel{tan(65 \degree  -   \theta)}} = tan(90 \degree - ( 25  \degree +  \theta)) \\  \sf{0  \:  \:  \:  \:  \:  \: =  \:  \:  tan(90 \degree - ( 25  \degree +  \theta))} \\  \boxed{ \sf{tan(90 \degree - ( 25  \degree +  \theta)) = 0}}

Similar questions