Math, asked by Oyendrila2, 10 months ago

Solve it !
 \frac{1}{2} log_{ \sqrt{3} }( \frac{x + 1}{x + 5} ) + log_{9}{(x + 5)}^{2} = 1
Don't spam ___!!!​

Answers

Answered by Anonymous
15

Question :

\sf \:  \dfrac{1}{2} log_{ \sqrt{3} }( \dfrac{x + 1}{x + 5} ) +  log_{9}( {x + 5)}^{2}  = 1

Solve it .

Solution :

 \sf \:  \dfrac{1}{2}  log_{ \sqrt{3} }( \dfrac{x + 1}{x + 5} )  +  log_{9} {(x + 5)}^{2} = 1 \\  \\  \implies \sf \:  \dfrac{1}{2}  . \dfrac{ log( \dfrac{x + 1}{x + 5} ) }{  log( \sqrt{3} )  }  +  \dfrac{ log( {x + 5)}^{2} }{ log(9) }   \:  \:  \{identity \:  : log_{a}(b)  =  \dfrac{ log(b) }{ log(a) }  \}  \\  \\  \implies \sf \:  \dfrac{1}{2}  . \dfrac{ log( \dfrac{x + 1}{x + 5} ) }{ \dfrac{1}{2} log(3)  }  +  \dfrac{2 log(x + 5) }{2 log(3) } = 1 \\  \\  \implies \sf \:  \dfrac{ log( \dfrac{x + 1}{x + 5} ) }{ log(3) }   +  \dfrac{ log( x + 5) }{ log(3) } = 1 \\  \\  \implies \sf \:  log_{3}( \dfrac{x + 1}{x + 5}  ) +   log_{3}(x + 5)  = 1 \:  \:  \{identity \:  :   \dfrac{ log(b) }{ log(a) }  =  log_{a}(b)  \} \\  \\  \implies \sf \:  log_{3}( \dfrac{x + 1}{x + 5}.(x + 5) )  = 1 \:  \{identity \:  :  log_{a}(m)  +  log_{a}(n) =  log_{a}(mn)  \}  \\  \\ \implies\sf\:log_3(x+1)=1\:\\ \\ \implies\sf\:x+1=3\:\{Identity\::log_a(b)=x\implies\:a^x=b\} \\ \\ \implies\sf\:x=3-1\\ \\ \implies\sf\:x=2

Therefore, the value of x is 2.

Answered by silentlover45
2

  \huge \mathfrak{Answer:-}

\large\underline\mathrm{the \: value \: of \: x \: is \: 2.}

\large\underline\mathrm{Solution}

\implies 1/2log√3(x + 1 / x + 5) + log9(x + 5)² = 1

\implies 1/2log(x + 1 / x + 5)/log√3 + log9(x + 5)²/log9 = 1

\implies 1/2log(x + 1 / x + 5)/1/2log3 + 2log(x + 5)/2log3 = 1

\implies log3(x + 1 / x + 5) + log3(x + 5) = 1

\implies log3(x + 1 / x + 5 . (x + 5)) = 1

\implies log3(x + 1) = 1

\implies x + 1 = 3

\implies x = 3 -1

\implies x = 2

\large\underline\mathrm{hence,}

\large\underline\mathrm{the \: value \: of \: x \: is \: 2.}

\large\underline\mathrm{Hope \: it \: helps \: you \: plz \: mark \: me \: brainlist}

Similar questions