Math, asked by god613136, 9 months ago

solve it with solution​

Attachments:

Answers

Answered by shadowsabers03
0

Given to solve:-

\quad

\dfrac {3a}{\sqrt{x+a}}=\sqrt x+\sqrt{x+a}

\quad

Let,

\quad

k=\sqrt {x+a}

\quad

Then,

\quad

\dfrac {3a}{k}=\sqrt x+k\\\\\\k^2+k\sqrt x-3a=0

\quad

Solving the quadratic equation,

\quad

k=\dfrac {-\sqrt x\pm\sqrt{x+12a}}{2}\\\\\\2\sqrt{x+a}=-\sqrt x\pm\sqrt{x+12a}

\quad

Squaring both sides,

\quad

4(x+a)=2x+12a\pm\sqrt {x^2+12ax}\\\\\\2x-8a=\pm\sqrt {x^2+12ax}

\quad

Again squaring both the sides,

\quad

4x^2+64a^2-32ax=x^2+12ax\\\\\\3x^2-44ax+64a^2=0\\\\\\3x^2+(\sqrt {292}-22)ax-(\sqrt {292}+22)ax+64a^2=0\\\\\\x\Bigg(3x+(\sqrt {292}-22)a\Bigg)-\dfrac {(\sqrt {292}+22)a}{3}\Bigg(3x+(\sqrt {292}-22)a\Bigg)=0\\\\\\\Bigg(3x+(\sqrt {292}-22)a\Bigg)\left(x-\dfrac {(\sqrt {292}+22)a}{3}\right)=0

\quad

Thus,

\quad

3x-(22-\sqrt {292})a=0\quad\quad OR\quad\quad 3x-(22+\sqrt {292})a=0\quad

Or simply,

\quad

\Large\text {$\underline {\underline {3x-(22\pm\sqrt {292})a=0}}$}

Similar questions