Math, asked by GurmanKaur0, 4 months ago

Solve it :-


( x-4 ) (x-6 ) = ( x-2 ) (x-4 )​

Answers

Answered by Btsfanlover1
6

Answer:

(−+4)(−6)=(−2)(−4)

{\color{#c92786}{(-x+4)(x-6)}}=(x-2)(x-4)(−x+4)(x−6)=(x−2)(x−4)

−1⋅(−6)+4(−6)=(−2)(−4)

please support me yarr and mark as Brainliiests and please give some thanks in all my answers please

Answered by thebrainlykapil
39

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • ( \: x - 4 \: ) \: (x - 6) \:  =  \: (x - 2) \: (x - 4) \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  ( \: x - 4 \: ) \: (x - 6) \:  =  \: (x - 2) \: (x - 4)  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

Multiple the Terms.

\qquad \quad {:} \longrightarrow \sf{\sf{ x (x - 6) \:  - 4(x - 6) \:  =  \: x  (x - 4) \:  - 2(x - 4)    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{  {x}^{2}  - 6x \:  - 4x  + 24 \:  =  \:  {x}^{2} - 4x\:  - 2x  + 8 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{  \cancel\red  { {x}^{2} } - 6x \:  - 4x  + 24 \:  =   \:    \cancel\red  { {x}^{2} }  - 4x\:  - 2x  + 8 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{   -10x + 24 \:  =   \:      - 6x + 8 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{   -10x \:  + \:6x \:  =   \:        8 \:  - \:  24 }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{   -4x\:  =   \:        - 16}}\\

\qquad \quad {:} \longrightarrow \sf{\sf{   x\:  =   \:      \cancel \green{ \frac{  \red- 16}{  \red- 4} }}}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{x \: = \: 4 }}}

━━━━━━━━━━━━━━━━━━━━━━━━━

\large\underline{ \underline{ \sf \maltese{ \: Verfication:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\:  ( \: x - 4 \: ) \: (x - 6) \:  =  \: (x - 2) \: (x - 4)  }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

Putting the Value Of x

\qquad \quad {:} \longrightarrow \sf{\sf{  ( \: 4- 4 \: ) \: (4 - 6) \:  =  \: (4- 2) \: (4 - 4)  }}\\

Multiple them, as we have done earlier

\qquad \quad {:} \longrightarrow \sf{\sf{ 4(4 - 6) \:  - 4(4 - 6) \:  =  \: 4(4- 4) \:  - 2(4 - 4)    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ 4(4 - 6) \:  - 4(4 - 6) \:  =  \: 4(4- 4) \:  - 2(4 - 4)    }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ 16 - 24 \:   - 16 +  24 \:  =  \: 16 - 16 \:   - 8 + 8  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{   \cancel \red{16} \:  \cancel \green{ - 24}\:   \cancel \red{ - 16}  \:  \cancel \green{  + 24}   \:  =  \: \cancel \purple{16}  \: \cancel \purple{ - 16} \:\cancel \pink{ - 8}   \:   \cancel \pink{  +  8} }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{0 \: = \: 0}}}

Hence, Proved

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{ x \: = \underline {\underline{ 4}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions