Physics, asked by Raj22222, 11 months ago

Solve krr diyo
chalo byee yaaro
Gdnt
Gost dream ​

Attachments:

Answers

Answered by shadowsabers03
2

Answer:-

\Large\boxed{\sf{(C)\quad\!3^{\frac{31}{32}}}}

Solution:-

We have,

\longrightarrow\sf{\sqrt{ab}=\sqrt a\times\sqrt b}

Thus it is true that,

\longrightarrow\sf{\sqrt{a\sqrt{b}}=\sqrt a\times\sqrt{\sqrt b}}

Then,

\longrightarrow\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}=\sqrt{3}\times\sqrt{\sqrt3}\times\sqrt{\sqrt{\sqrt3}}\times\sqrt{\sqrt{\sqrt{\sqrt3}}}\times\sqrt{\sqrt{\sqrt{\sqrt{\sqrt3}}}}}

The following is true that,

\mapsto\sf{\sqrt3=3^{\frac{1}{2}}}

\mapsto\sf{\sqrt{\sqrt3}=\left(3^{\frac{1}{2}}\right)^{\frac{1}{2}}=3^{\frac{1}{4}}}

\mapsto\sf{\sqrt{\sqrt{\sqrt3}}=\left(3^{\frac{1}{4}}\right)^{\frac{1}{2}}=3^{\frac{1}{8}}}

\mapsto\sf{\sqrt{\sqrt{\sqrt{\sqrt3}}}=\left(3^{\frac{1}{8}}\right)^{\frac{1}{2}}=3^{\frac{1}{16}}}

\mapsto\sf{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt3}}}}=\left(3^{\frac{1}{16}}\right)^{\frac{1}{2}}=3^{\frac{1}{32}}}

Then,

\longrightarrow\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt{3}}}}}=3^{\frac{1}{2}}\times3^{\frac{1}{4}}\times3^{\frac{1}{8}}\times3^{\frac{1}{16}}\times3^{\frac{1}{32}}}

Since \sf{a^m\times a^n=a^{m+n},}

\longrightarrow\sf{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt3}}}}=3^{\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}}}

\longrightarrow\sf{\underline{\underline{\sqrt{3\sqrt{3\sqrt{3\sqrt{3\sqrt3}}}}=3^{\frac{31}{32}}}}}

Similar questions