Math, asked by nelson1938, 1 year ago

Solve
log (2x - 2) – log (11.66 – x) = 1 + log3

Answers

Answered by ihrishi
0

Answer:

log(2x - 2) - log (11.66-x)= 1 + log3 \\ log \frac{(2x - 2)}{(11.66 - x)}  = log10 + log3 \\ ..( \because \: log \: 10 = 1) \\ log \frac{(2x - 2)}{(11.66 - x)}  = log(10 \times 3) \\ log \frac{(2x - 2)}{(11.66 - x)}  = log30 \\  \frac{2x - 2}{11.66 - x}  = 30 \\ \frac{2(x - 1)}{11.66 - x}  = 30 \\ \frac{x - 1}{11.66 - x}  = 15 \\ x - 1 = 15(11.66 - x) \\ x - 1 = 174.9 - 15x \\ x + 15x = 174.9 + 1 \\ 16x = 175.9 \\ x =  \frac{175.9}{16}  \\ x = 10.99375 \\ x \approx11

Similar questions