Math, asked by sajimahmed, 11 months ago

solve log(base √z) x × log(base√x) y × log(base √y) z​

Answers

Answered by raushan6198
1

Answer:

given \: that \\  \\  log_{ \sqrt{z} }(x)   \:  \times  log_{ \sqrt{x} }(y)  \:  \times  log_{ \sqrt{y} }(z)  \\  \\  =  log_{ {z}^{ \frac{1}{2} } }(x)  \:  \times  log_{ {x}^{ \frac{1}{2} } }(y)  \:  \times  log_{ {y}^{ \frac{1}{2} } }(z)  \\  \\  =  \frac{1}{ \frac{1}{2}  }  log_{z}(x)  \times  \frac{1} { \frac{1}{2} }  log_{x}(y)  \times  \frac{1}{ \frac{1}{2} }  log_{y}(z)  \\  \\  = 2 \frac{ log(x) }{ log(z) }  \times 2 \frac{ log(y) }{ log(x) }  \times 2  \frac{ log(z) }{ log(y) }  \\  \\  = 8 \: ans. \\  \\ \: formula \: used \: are \:  log_{n}(m)  =  \frac{ log(m) }{ log(n) }  \\  \\ and log_{ {m}^{n} }(p)  =  \frac{1}{n}   log_{m}(p)

Similar questions