Math, asked by trushankbaria, 11 months ago

solve: log3(3^x - 8) =2-x​

Answers

Answered by pratyush4211
35

Step-by-step explanation:

 log_{3}( {3}^{x} - 8 )  = 2 - x

As We Know

.If

log to base the _b(c)=a

Then c=b^a

Then,Taking Base 3 into RHS

 {3}^{x}  - 8 =  {3}^{2 - x}  \\  \\  {3}^{x}  - 8 = 3 {}^{2}   \times  {3}^{ - x}  \\  \\  {3}^{x}  - 8 = 9 \times ( \frac{1}{3} ) ^{x}  \\  \\  {3}^{x}   - 8 = 9 \times  \frac{1}{3 {}^{x} }

Let

 {3}^{x}  = a

Then

a - 8 = 9 \times  \frac{1}{a}  \\  \\ a  - 8 =  \frac{9}{a}  \\  \\ a(a - 8) = 9 \\  \\  {a}^{2}  - 8a - 9 = 0 \\  \\  {a}^{2}  - 9a + a - 9 = 0 \\  \\ a(a - 9) + 1(a - 9) \\  \\ (a + 1)(a - 9)

Now

a+1=0

a=-1

Substituting 3^x on place of a

3^x=-1

We will not anything with these Equation.

Now

a-9=0

a=9

Substituting value of a=3^x

3^x=9

3^x=3²

X=2

So ,X=2

 \boxed{ \mathbf{ \huge{ \red{x = 2}}}}

Similar questions