CBSE BOARD X, asked by rvlmryll, 21 hours ago

solve logarithmic differentiation, find dy/dx if y=(cosh e^x + coth^4 x)^(log3 (x))​

Answers

Answered by joymerlin2531
0

Answer:

Solution

verified

Verified by Toppr

Correct option is

A

cosh

2

xsinh

2

x

−(sinh

3

x+cosh

3

x)

We have,

dx

d

e

2

1

log(1−tanh

2

x)

+3

2

1

log

3

(coth

2

x−1)

=

dx

d

{e

log(

1−tanh

2

x

)

+3

log

3

(

coth

2

x−1

)

}

=

dx

d

{

1−tanh

2

x

+

coth

2

x−1

}

={

2

1−tanh

2

x

1

×(0−2tanhx(1−tanh

2

x))+

2

coth

2

x−1

1

×(2cothx(1−coth

2

x)−0)}

={

1−tanh

2

x

−tanhx(1−tanh

2

x)

coth

2

x−1

cothx(coth

2

x−1)

}

={−tanhx(

1−tanh

2

x

)−cothx(

coth

2

x−1

)}

=

coshx

sinhx

1−

cosh

2

x

sinh

2

x

sinhx

coshx

sinh

2

x

cosh

2

x

−1

=−{

cosh

2

x

sinhx

(

cosh

2

x−sinh

2

x

)+

sinh

2

x

coshx

(

cosh

2

x−sinh

2

x

)}

=−{

cosh

2

x

sinhx

+

sinh

2

x

coshx

}(

cosh

2

x−sinh

2

x

)

=−(

sinh

2

xcosh

2

x

sinh

3

x+cosh

3

x

)(

cosh

2

x−sinh

2

x

)

We know that

cosh

2

x−sinh

2

x=1

Therefore,

=−(

sinh

2

xcosh

2

x

sinh

3

x+cosh

3

x

)×1

=−(

sinh

2

xcosh

2

x

sinh

3

x+cosh

3

x

)

Hence, this is the answer

Similar questions