Math, asked by Muskan01111111111111, 1 year ago

Solve No.3................................

Attachments:

Answers

Answered by soh2
1
hope it will help you.
please mark it as brainliest.
Attachments:
Answered by DaIncredible
0
Hey friend,
Here is the answer you were looking for:
 \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6}  -  \sqrt{2} }  +  \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}  \\  \\ on \: rationalizing \: the \: denominator \: we \: get \\  \\  =  \frac{3 \sqrt{2} }{ \sqrt{6} -  \sqrt{3}  }  \times  \frac{ \sqrt{6}  +  \sqrt{3} }{ \sqrt{6} +  \sqrt{3}  }  -  \frac{4 \sqrt{3} }{ \sqrt{6} -  \sqrt{2}  }  \times  \frac{ \sqrt{6} +  \sqrt{2}  }{ \sqrt{6} +  \sqrt{2}  }  \\  +  \frac{2 \sqrt{3} }{ \sqrt{6}  + 2}  \times  \frac{ \sqrt{6}  - 2}{ \sqrt{6}  - 2}  \\  \\ using \: the \: identity \\ (a + b)(a - b) =  {a}^{2}  -  {b}^{2}  \\  \\  =  \frac{3 \sqrt{2}  \times  \sqrt{6}  + 3 \sqrt{2} \times  \sqrt{3}  }{ {( \sqrt{6} )}^{2}  -  {( \sqrt{3}) }^{2} }  -  \frac{4 \sqrt{3}  \times  \sqrt{6}  + 4 \sqrt{3}  \times  \sqrt{2} }{ {( \sqrt{6} )}^{2} -  {( \sqrt{2}) }^{2}  }  \\  +  \frac{2 \sqrt{3}  \times  \sqrt{6} - 2 \sqrt{3}  \times 2 }{ {( \sqrt{6}) }^{2} -  {(2)}^{2}  }  \\  \\  =  \frac{3 \sqrt{2 \times 2 \times 3} + 3 \sqrt{6}  }{6 - 3}  -  \frac{4 \sqrt{3 \times 2 \times 3}  + 4 \sqrt{6} }{6 - 2}  +  \frac{2 \sqrt{3 \times 3 \times 2} - 4 \sqrt{3}  }{6 - 4}  \\  \\  =  \frac{3 \times 2 \sqrt{3} + 3 \sqrt{6}  }{3}  -  \frac{4 \times 3 \sqrt{2}  + 4 \sqrt{6} }{4}  +  \frac{2 \times 3 \sqrt{2} - 4 \sqrt{3}  }{2}  \\  \\  =  \frac{6 \sqrt{2}  + 3 \sqrt{6} }{3}  -  \frac{12 \sqrt{2}  + 4 \sqrt{6} }{4}  +  \frac{6 \sqrt{2} - 4 \sqrt{3}  }{2}  \\  \\  = 2 \sqrt{2}  +  \sqrt{6}  - 3 \sqrt{2}  +  \sqrt{6}  + 3 \sqrt{2}  - 2 \sqrt{3}  \\  \\  = 2 \sqrt{2}  + 2 \sqrt{6}  - 2 \sqrt{3}  \\  \\  = 2( \sqrt{2}  +  \sqrt{6}  -  \sqrt{3} )

Hope this helps!!!

@Mahak24

Thanks....
☺☺

DaIncredible: thnx for brainliest
Similar questions