Solve no. 5 fasttttt...........
Attachments:
Answers
Answered by
3
Ya, Answer Is Here!!!!!!!
◆Question: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sinc(C/2)
Now,
L.H.S,
cosA+cosB+cosC
=(cosA+cosB)+cosC
=[2×cos{ (A+B)/2 × cos (A-B)/2 }+ cosC
=[2cos { (π/2)-(C/2)] × [cos (A-B)/2] +cosC
=[ 2sin C/2 × cos (A-B)/2 ] + [1-2×sin^2 (C/2)]
=[1+2sin (C/2) × cos (A-B)/2 ] - sin (C/2)
=[1+2sin (C/2) × cos (A-B)/2 ] - cos (A+B)/2]
=[1+2sin (C/2) × 2sin (A/2) × sin (B/2)]
=[1+4 sin (A/2) × Sin(B/2) × sin(C/2)]
=RHS
So, We Can Say cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sinc(C/2).
Hope My Answer Helped☺️
◆Question: cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sinc(C/2)
Now,
L.H.S,
cosA+cosB+cosC
=(cosA+cosB)+cosC
=[2×cos{ (A+B)/2 × cos (A-B)/2 }+ cosC
=[2cos { (π/2)-(C/2)] × [cos (A-B)/2] +cosC
=[ 2sin C/2 × cos (A-B)/2 ] + [1-2×sin^2 (C/2)]
=[1+2sin (C/2) × cos (A-B)/2 ] - sin (C/2)
=[1+2sin (C/2) × cos (A-B)/2 ] - cos (A+B)/2]
=[1+2sin (C/2) × 2sin (A/2) × sin (B/2)]
=[1+4 sin (A/2) × Sin(B/2) × sin(C/2)]
=RHS
So, We Can Say cosA+cosB+cosC=1+4sin(A/2)sin(B/2)sinc(C/2).
Hope My Answer Helped☺️
alishakhan3:
ohk
Similar questions