English, asked by chinkybatra981, 5 months ago

solve one of them( the one with correct answer be given 20 thnx)​

Attachments:

Answers

Answered by MiteshAgrawal04
1

Answer:

This is your answer. Hope it helps.

Attachments:
Answered by MysticPetals
5

Rationale : -

→ To prove

 { \sec \theta }^{2}  -  \:  {cos \:  \theta}^{2}  =  { \sin\theta}^{2} \: ( { \sec\theta  }^{2} + 1)

★ LHS :

 { \sec \theta }^{2}  -  { \cos\theta }^{2}

 ( \sec \theta  -  \cos \theta) \:  ( \sec \theta   +   \cos \theta)

( \dfrac{1}{ \cos\theta }  -  \cos\theta) \: ( \dfrac{1}{ \cos\theta }   +  \cos\theta)

( \dfrac{1 -  { \cos  }\theta^{2} }{ \cos\theta} )( \dfrac{1  +   { \cos  }\theta^{2} }{ \cos\theta} )

 = ( \dfrac{ { \sin } ^ {2}  \theta}{ \cos \theta } )( \dfrac{1}{ \cos \: \theta } +  \dfrac{ { \cos \:  }^{2}\theta }{ \cos \theta }  )

 =  { \sin }^{2} \theta ( \dfrac{1}{ { \cos }^{2} \theta }  + 1)

 =  { \sin}^{2}  \theta \: (  { \sec } ^{2} \theta \:  + 1)

= RHS

Hence proved.

Attachments:
Similar questions