solve p2x2+(p2-q2)x-q2=0
Answers
Answered by
258
Hi ,
Given quadratic equation is
p²x² + ( p² - q² )x - q² = 0
dividing each term with p² ,
p²x² / p² + [ ( p² - q² ) / p² ] x - q² / p² = 0
⇒ x² + [ 1 - q² / p² ] x - q² / p² = 0
To find the roots split the middle term
⇒ x² + x - ( q² / p² ) x - q² / p² = 0
⇒ x ( x + 1 ) - ( q² / p² ) ( x + 1) = 0
⇒ ( x+ 1 ) ( x - q² /p² ) = 0
Therefore,
x+1 =0 or x - q² / p² =0
x= -1 or x = q² / p²
I hope this helps you.
****
Given quadratic equation is
p²x² + ( p² - q² )x - q² = 0
dividing each term with p² ,
p²x² / p² + [ ( p² - q² ) / p² ] x - q² / p² = 0
⇒ x² + [ 1 - q² / p² ] x - q² / p² = 0
To find the roots split the middle term
⇒ x² + x - ( q² / p² ) x - q² / p² = 0
⇒ x ( x + 1 ) - ( q² / p² ) ( x + 1) = 0
⇒ ( x+ 1 ) ( x - q² /p² ) = 0
Therefore,
x+1 =0 or x - q² / p² =0
x= -1 or x = q² / p²
I hope this helps you.
****
Answered by
18
Answer:
p2x2+(p2-q2)x-q2 =0
p2x+p2x-q2x-q2 =0
a = p2
b = p2-q2
c = -q2
using quadratic formula,
D = -b+-√(b2-4ac)/2a
= -(p2-q2)+-√[(p2-q2)^2-4×p2×q2]/2p^2
= -p2+q2+-√[p4-q4-2p2q2+4p2q2]/2p^2
= -p2+q2+-√(p4-q4+2p^2q^2)/2p^2
= -p2+q2+-p2-q2/2p^2
= -p2+q2-p2-q2/2p^2 , -p2+q2+p2+q2/2p^2
= -2p^2/2p^2 , 2q^2/2p^2
= -1 , q2/p2
Similar questions