Math, asked by Ronakmangal189, 3 months ago

solve please monday ko mera exam h​

Attachments:

Answers

Answered by Anonymous
11

Given

  • x² + 1/x² = 34

Explanation

We can use Quantity as to express this equation as :-

(a + b)² = a² + b² + 2ab

Now, after putting values here by:

Let a = x and b = 1/x

 \colon\implies{\sf{ (a+b)^2 = a^2+b^2+2ab }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right)^2 = x^2 + \left( \dfrac{1}{x} \right)^2 + 2 \cancel{x} \times \dfrac{1}{ \cancel{x} } }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right)^2 = x^2 + \dfrac{1}{x^2}  + 2 }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right)^2 = 34  + 2 }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right)^2 = 36 }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right) = \sqrt{36} }} \\ \\ \\ \colon\implies{\sf{ \left( x + \dfrac{1}{x} \right) = 6 }} \\

Hence,

 \\ {\underline{\sf{ The \ value \ of \ \left( x + \dfrac{1}{x} \right) \ is \ 6. }}} \\

Answered by mankaovi1025
1

Answer:

(x+1/x)^2 = x^2+1/x^2+2*x*1/x

= x^2+1/x^2+2

= 34+2 = 36

(x+1/x)^2 = 36

x+1/x = √36

x+1/x = 6

Similar questions