solve plz..
cos^2 theta- sin theta=1/4
Answers
Answered by
80
Solution :
{ => Using 'a' in place of theta. }
cos²a-sina = 1/4
(1-sin²a) - sina = 1/4
4-4sin²a-4sina-1 = 0
=> 4sin²a+4sina-3 = 0
=> 4sin²a+6sina-2sina-3 = 0
=> 2sina(2sina+3)-1(2sina+3) = 0
=> (2sina-1)(2sina+3) = 0
since, Sina = -3/2 is not possible
=> Sina = 1/2
=> a = π/6 or 30° Ans.
{ => Using 'a' in place of theta. }
cos²a-sina = 1/4
(1-sin²a) - sina = 1/4
4-4sin²a-4sina-1 = 0
=> 4sin²a+4sina-3 = 0
=> 4sin²a+6sina-2sina-3 = 0
=> 2sina(2sina+3)-1(2sina+3) = 0
=> (2sina-1)(2sina+3) = 0
since, Sina = -3/2 is not possible
=> Sina = 1/2
=> a = π/6 or 30° Ans.
Answered by
20
Answer:
1/2
Step-by-step explanation:
we know that
cos^2 θ -sin θ=1
ie:
1-sin^2 θ-sin θ=1/4
4-4sin^2 θ-4sin θ-1=0
4sin^2 θ+4sin θ-3=0
factorizing the above eqn
(2sin θ+3)(2sin θ-1)=0
θ=-3/2 or θ=1/2 (neglect - value)
so that sin θ=1/2
Similar questions