Math, asked by MiniDoraemon, 1 month ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by Asterinn
58

 \rm \longrightarrow \large {(2)}^{ \frac{1}{4} } . {(4)}^{ \frac{1}{8} } . {(8)}^{ \frac{1}{16} } ... \infty

 \rm \longrightarrow \large {(2)}^{ \frac{1}{4} } . {(2)}^{ \frac{2}{8} } . {(2)}^{ \frac{3}{16} } ... \infty

 \rm \longrightarrow \large {(2)}^{ \frac{1}{4} + \frac{2}{8} +  \frac{3}{16} + ... \infty}

 \rm  \large {Let  \: \:  \:  { \frac{1}{4} + \frac{2}{8} +  \frac{3}{16} + ... \infty} = s }

 \rm \longrightarrow \large {(2)}^{  \large s}

 \tt s = { \frac{1}{4} + \frac{2}{8} +  \frac{3}{16} +  \frac{4}{32} ... \infty}  \\  \\ \tt  \frac{s}{2}  =  \frac{1}{8} + \frac{2}{16} +  \frac{3}{32} + ... \infty \\  \\ \tt  \rightarrow \bigg(s -  \frac{s}{2} \bigg ) = \frac{1}{4} +  \frac{1}{8} +  \frac{1}{16} +  \frac{1}{32}...\infty\\  \\ \tt  \rightarrow \frac{s}{2} = \frac{1}{4} +  \frac{1}{8} +  \frac{1}{16} +  \frac{1}{32}...\infty \\  \\ \tt  \rightarrow \frac{s}{2} =  \dfrac{ \dfrac{1}{4} }{1 -  \dfrac{1}{2} } \\  \\ \tt  \rightarrow \frac{s}{2} =  \dfrac{ \dfrac{1}{4} }{  \dfrac{1}{2} } \\  \\ \tt  \rightarrow \frac{s}{2} =  { \dfrac{1}{2} }\\  \\ \tt  \rightarrow {s}=  1

\rm \longrightarrow \large {(2)}^{  \large s}  =  {2}^{1}

Therefore, option (b) 2 is correct.

Answered by rk8810123
0

Answer:

option b is correct answer

Attachments:
Similar questions