Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by TheLifeRacer
6

Answer:

Answer:x, y,z are in HP

Step-by-step explanation:

Solution is given in attachment

Attachments:
Answered by Asterinn
14

  \displaystyle \tt \: x = \sum_{n = 0}^{ \infty} {a}^{n} \\  \\  \longrightarrow \tt x  =   {a}^{0}  +  {a}^{1} +  {a}^{2} +  {a}^{3}{...{ \infty}}\\  \\ \longrightarrow \tt x  = \dfrac{1}{1 - a} \\  \\   \displaystyle \tt \: y = \sum_{n = 0}^{ \infty} {b}^{n}\\  \\  \longrightarrow \tt y  =   {b}^{0}  +  {b}^{1} +  {b}^{2} +  {b}^{3}{...{ \infty}}\\  \\ \longrightarrow \tt y = \dfrac{1}{1 - b} \\  \\  \displaystyle \tt \: z= \sum_{n = 0}^{ \infty} {c}^{n} \\  \\  \longrightarrow \tt z  =   {c}^{0}  +  {c}^{1} +  {c}^{2} +  {c}^{3}{...{ \infty}}\\  \\ \longrightarrow \tt z  = \dfrac{1}{1 - c}

Now , it is given that a,b,c are in A.P.

So (1-a) , (1-b) and (1-c) are also in A.P.

 \tt \therefore \dfrac{1}{1 - a} , \dfrac{1}{1 - b} \:  \rm{and } \:  \tt{ \dfrac{1}{1 - c}} \:\rm{ are \: in \: H.P}

Answer :-

Option (a)H.P is correct.

Similar questions