Math, asked by MiniDoraemon, 6 hours ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by amansharma264
7

EXPLANATION.

\implies \dfrac{1^{3} }{1} + \dfrac{1^{3} + 2^{3}  }{1 + 3} + \dfrac{1^{3} + 2^{3}  + 3^{2} }{1 + 3 + 5} + . . . . .

Sum of first 9 terms,

As we know that,

We can write equation as,

\implies \dfrac{1^{3} + 2^{3}  + 3^{3}  + . . . . . + n^{3} }{1 + 3 + 5 + . . . . . + n \ terms}

1 + 3 + 5 + . . . . . + n terms.

First term = a = 1.

Common difference = d = b - a = c - b.

Common difference = d = 3 - 1 = 2.

Sum of n terms of an A.P.

⇒ Sₙ = n/2[2a + (n - 1)d].

⇒ Sₙ = n/2[2 + (n - 1)2].

⇒ Sₙ = n/2[2 + 2n - 2].

⇒ Sₙ = n/2[2n].

⇒ Sₙ = n².

As we know that,

Sum of cube of first n natural numbers.

⇒ ∑r³ = [n(n + 1)/2]².

Using this formula in the equation, we get.

\implies \dfrac{\bigg(\dfrac{n(n + 1)}{2} \bigg)^{2} }{n^{2} } \ = \dfrac{(n + 1)^{2} }{4}

\implies \displaystyle \dfrac{1}{4} \sum_{n = 1}^{9} (n + 1)^{2}

\implies \displaystyle \dfrac{1}{4} \sum_{n = 1}^{9} (n^{2} + 2n + 1)

\implies \displaystyle \dfrac{1}{4} \bigg[\sum_{n = 1}^{9} n^{2} + \sum_{n= 1}^{9} 2n + \sum_{n = 1}^{9} 1 \bigg]

\implies \displaystyle \dfrac{1}{4} \bigg[\dfrac{n(n + 1)(2n + 1)}{6} + \dfrac{n(n + 1)}{2}  + n \bigg]

\implies \displaystyle \dfrac{1}{4} \bigg[\dfrac{9(9 + 1)(2(9) + 1)}{6} + \dfrac{9(2)((9) + 1)}{2}  + 9 \bigg]

\implies \dfrac{1}{4} \bigg[ \dfrac{9 (10)(19)}{6} + 90 + 9 \bigg]

\implies \dfrac{1}{4}  \bigg[ 3(5)(19) + 90 + 9 \bigg]

\implies \dfrac{1}{4}  \bigg[ 285 + 90 + 9 \bigg]

\implies \dfrac{1}{4}  \bigg[ 384 \bigg] = 96

Option [B] is correct answer.

Answered by LivetoLearn143
5

\large\underline{\sf{Solution-}}

 \sf \:  \dfrac{1^{3} }{1} + \dfrac{1^{3} + 2^{3} }{1 + 3} + \dfrac{1^{3} + 2^{3} + 3^{3} }{1 + 3 + 5} + . . . . .9 \: terms

 \sf \:  \dfrac{1^{3} }{1} + \dfrac{1^{3} + 2^{3} }{4} + \dfrac{1^{3} + 2^{3} + 3^{3} }{9} + . . . . .9 \: terms

 \sf \:  \dfrac{1^{3} }{ {1}^{2} } + \dfrac{1^{3} + 2^{3} }{ {2}^{2} } + \dfrac{1^{3} + 2^{3} + 3^{3} }{ {3}^{2} } + . . . . .9 \: terms

From sequences we know,

 \sf \: 1 + 2 + 3 +  -  -  -  + n = \bigg(\dfrac{n(n + 1)}{2} \bigg)

 \sf \: 1^{2}  + 2^{2} + 3^{2} +  -  -  -  + n^{2} = \bigg(\dfrac{n(n + 1)(2n + 1)}{6} \bigg)

 \sf \: 1^{3} + 2^{3} + 3^{3} +  -  -  -  + n^{3} = \bigg(\dfrac{n(n + 1)}{2} \bigg)^{2}

Now,

The nth term of the above sequence can be rewritten as

 \sf \: a_n \:  =  \: \dfrac{ \sum \:  {n}^{3} }{ {n}^{2} }

 \sf \: a_n \:  =  \: \dfrac{ \bigg(\dfrac{n(n + 1)}{2} \bigg) ^{2} }{ {n}^{2} }

 \sf \: a_n = \dfrac{ {n}^{2}  + 2n + 1}{4}

So, Sum of 9 terms is given by

 \sf \:\sum_{n=1}^9 a_n =\sum_{n=1}^9 \dfrac{ {n}^{2}  + 2n + 1}{4}

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}( \sum_{n=1}^9  {n}^{2}  + 2\sum_{n=1}^9n + \sum_{n=1}^91)

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}\bigg(\dfrac{9(9 + 1)(18 + 1)}{6} + 9(9 + 1) + 9 \bigg)

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}\bigg(\dfrac{9(10)(19)}{6} + 9(10) + 9 \bigg)

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}\bigg((15)(19)+ 90 + 9 \bigg)

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}\bigg(285+ 90 + 9 \bigg)

 \sf \:\sum_{n=1}^9 a_n =\dfrac{1}{4}\bigg(384 \bigg)

 \sf \:\sum_{n=1}^9 a_n  = 96

Hence,

Option (b) is correct.

Similar questions