Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee

Chapter :- sequence and series​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given that,

m is Arithmetic mean between l and n,

It means l, m, n are in AP

So,

\rm :\longmapsto\:m = \dfrac{l + n}{2}  -  -  - (1)

Also, given that,

\rm :\longmapsto\:G_1,G_2,G_3 \: are \: geometric \: mean \: between \: l \: and \: n

\rm :\longmapsto\:l,G_1,G_2,G_3,n \: are \: in \: GP

We know,

nth term of GP series is given by

\rm :\longmapsto\:a_n =  {ar}^{n - 1}

where

  • a is the first term

  • r is common ratio

  • n is number of terms

So,

According to given,

  • first term = l

  • last term = n

  • number of terms, = 5

On substituting the values, we have

\rm :\longmapsto\:n = l {r}^{5 - 1}

\rm :\longmapsto\:n = l {r}^{4}

\bf\implies \: {r}^{4} = \dfrac{n}{l} -  -  - (2)

Now,

\rm :\longmapsto\:G_1 = lr

\rm :\longmapsto\:G_2 = l {r}^{2}

\rm :\longmapsto\:G_3 = l {r}^{3}

Now, Consider

\rm :\longmapsto\: {G_1}^{4} + 2( {G_2}^{4}) +  {G_3}^{4}

On substituting the values we get

\rm \: =  \:  {(lr)}^{4}  + 2 {( {lr}^{2}) }^{4}  +  {( {lr}^{3} )}^{4}

\rm \:  =  \:  \:  {l}^{4} {r}^{4}(1 +  2{r}^{4}  +  {r}^{8})

\rm \:  =  \:  \:  {l}^{4} {r}^{4} {(1 +  {r}^{4} )}^{2}

\rm \:  =  \:  \:  {l}^{4} \times \dfrac{n}{l} \bigg(1 + \dfrac{n}{l} \bigg)^{2}

\rm \:  =  \:  \:  {l}^{3} n \bigg( \dfrac{l + n}{l} \bigg)^{2}

\rm \:  =  \:  \:  {l}^{3} n \bigg( \dfrac{2m}{l} \bigg)^{2}

\rm \:  =  \:  \:  {l}^{3} n \bigg( \dfrac{4 {m}^{2} }{ {l}^{2} } \bigg)

\rm \:  =  \:  \:  {4m}^{2}ln

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf \: Option \: (b) \: is \: correct}}

Similar questions