Math, asked by MiniDoraemon, 2 months ago

Solve previous year Question of iit jee
Chapter:- Vectors​

Attachments:

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

The given equation of lines are,

\rm :\longmapsto\:x = ay + b \: and \: z = cy + d -  -  - (1)

and

\rm :\longmapsto\:x = a'z + b' \: and \: y = c'z+ d' -  -  - (2)

Now, Equation (1) can be rewritten as

\rm :\longmapsto\:y = \dfrac{x - b}{a}  \:  \: and \: y = \dfrac{z - d}{c}

So, it can further reduced to

\rm :\longmapsto\:\dfrac{x - b}{a}  \: =   \:\: y = \dfrac{z - d}{c}

\rm :\longmapsto\:\dfrac{x - b}{a}  \: =   \:\: \dfrac{y - 0}{1}  \:  =  \: \dfrac{z - d}{c}

So, Direction ratios of this line is

\rm :\longmapsto\:d. {r}'s \:  = (a, \: 1, \: c)

Now,

Equation (2) can be rewritten as

\rm :\longmapsto\:x = a'z + b' \: and \: y = c'z+ d'

\rm :\longmapsto\:z = \dfrac{x - b'}{a'}  \:  \: and \:  \: z = \dfrac{y - d'}{c'}

So, it can further reduced to

\rm :\longmapsto\: \dfrac{x - b'}{a'}  \:  =  \: z \:= \dfrac{y - d'}{c'}

\rm :\longmapsto\: \dfrac{x - b'}{a'} \:= \:  \dfrac{y - d'}{c'} \:  = z

\rm :\longmapsto\: \dfrac{x - b'}{a'} \:= \:  \dfrac{y - d'}{c'} \:  = \dfrac{z - 0}{1}

So, Direction ratios of this line is

\rm :\longmapsto\:d. {r}'s \:  = (a', \: c', \: 1)

Since, it is given that Equation (1) and Equation (2) are perpendicular to each other.

Therefore, .

\rm :\longmapsto\:a.a' + 1.c' + c.1 = 0

\bf :\longmapsto\:aa' + c' + c = 0

Hence,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \underbrace{ \boxed{ \bf{ \: Option \: (c) \: is \: correct}}}

Additional Information :-

Let us consider two lines

\rm :\longmapsto\: \vec{r} \:  =  \: \vec{a} \:  +  \:  \alpha  \: \vec{b} \:

and

\rm :\longmapsto\: \vec{r} \:  =  \: \vec{c} \:  +  \:   \beta   \: \vec{d} \:

Then,

1. Two lines are perpendicular iff

 \red{\rm :\longmapsto\:\vec{b} \:. \: \vec{d} \: =  \: 0}

2. Two lines are parallel iff

 \red{\rm :\longmapsto\:\vec{b} \: = k \: \vec{d} \:}

or

 \red{\rm :\longmapsto\:\vec{b} \: \times  \: \vec{d} \: =  \: 0}

3. Angle 'p' between 2 lines are given by

 \red{\rm :\longmapsto\:cosp \:  =  \: \dfrac{\vec{b} \:. \: \vec{d} \:}{ |\vec{b} \:|  \:  |\vec{d} \:| }}

Similar questions