Math, asked by divyanshrajpoot16, 1 year ago

solve proper.......​

Attachments:

Answers

Answered by Anonymous
1

ANSWER:-

Given:

p(x)= 2x³ + 5x² -9x -18

&

The product of two zeroes is 3.

To find:

Find the other zeroes.

Solution:

</u><u>A</u><u>ssum e</u><u>,</u><u> \:  \alpha  \beta  =  - 3...........(1) \\  \\  =  &gt;  \alpha  \beta  \gamma  =  -  \frac{d}{a}  =  \frac{ - ( - 18)}{2}  \\  \\  =  &gt;  \alpha  \beta  \gamma  =  \frac{18}{2}  = 9 \\ so \\  =  &gt; ( - 3)y = 9  \\  =  &gt;  - 3y = 9 \\  =  &gt; y =   - \frac{9}{3}  \\  =  &gt; y =  - 3 \\ </u><u>T</u><u>herefore </u><u>,</u><u>\\  =  &gt;  \alpha  +  \beta  +  \gamma  =  \frac{ - 5}{2}  \\  \\  =  &gt;   \alpha  +  \beta  - 3 =  \frac{ - 5}{2}  \\  \\  =  &gt;  \alpha  +  \beta   = 3 -  \frac{5}{2}  \\  \\  =  &gt;  \alpha  +  \beta  =  \frac{6 - 5}{2}  \\  \\  =  &gt;  \alpha  +  \beta  =  \frac{1}{2}  \\  =  &gt;  \alpha  =  (\frac{1}{2}  -  \beta ) \\  \\  =  &gt;  ( \frac{1}{2}  -  \beta ) \beta  =  - 3 \:  \:  \:  \:  \:  \:  \:  \: </u><u>[</u><u>P</u><u>utting</u><u> \: in \: eq.1</u><u>]</u><u> \\  \\  =  &gt;  \frac{ \beta }{2}  -  { \beta }^{2}  =  - 3 \\  \\  =  &gt;  \beta  - 2 { \beta }^{2}  =  - 6 \\  \\  =  &gt;  \beta  - 2 { \beta }^{2} + 6 = 0 \\  \\   =  &gt; 2 { \beta }^{2}   -  \beta  - 6 = 0 \\  \\  =  &gt; 2 { \beta }^{2}  - 4 \beta  +  3 \beta  - 6 = 0 \\  \\  =  &gt; 2 \beta ( \beta  - 2) +  3( \beta  - 2) = 0 \\  \\   =  &gt; ( \beta  - 2)(2 \beta  + 3) = 0 \\  \\  =  &gt;  \beta  - 2 = 0 \:  \:  \: or \:  \:  \: 2 \beta  + 3 = 0 \\  \\  =  &gt;  \beta  = 2 \:  \:  \: or \:  \:  \beta  =  -  \frac{3}{2}

So,

⚫One zero, alpha= 2

⚫Other zero, Beta= -3/2

Option (1)✓

Hope it helps ☺️

Similar questions