solve quad. equation 9x^2-22x+8
Answers
Answered by
1
Answer:
9x^2-22x+8=(x-2)(9x-4)
Step-by-step explanation:
Given : Expression 9x^2-22x+8
To find : Factorise the given expression?
Solution :
The solution of a quadratic equation ax^2+bx+c=0 is
x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
On comparing with 9x^2-22x+8=0
a=9 , b=-22, c=8
Substitute the values in the solution,
x=\frac{-(-22)\pm\sqrt{(-22)^2-4(9)(8)}}{2(9)}
x=\frac{22\pm\sqrt{484-288}}{18}
x=\frac{22\pm\sqrt{196}}{18}
x=\frac{22\pm 14}{18}
x=\frac{11\pm 7}{9}
x=\frac{11+7}{9},\frac{11-7}{9}
x=\frac{18}{9},\frac{4}{9}
x=2,0.44
Therefore, The value of x is 2,0.44.
Factorise form is 9x^2-22x+8=(x-2)(9x-4)
Similar questions