Math, asked by NainaMehra, 1 year ago

Solve quadratic equation

a {}^{2} b {}^{2} x {}^{2}  + b {}^{2}x - a {}^{2}  x - 1 = 0

Answers

Answered by Anonymous
14
\underline{\underline{\large{\mathfrak{Solution : }}}}



\underline{\mathsf{To \: Solve \longrightarrow a^{2}b^{2}x^{2} \: + \: b^{2}x \: - \: a^{2}x \: - \: 1 \: = \: 0}}



\underline{\textsf{By Factorization Method : }} \\ \\<br /><br />\mathsf{\implies a^{2}b^{2}x^{2} \: + \: b^{2}x \: - \: a^{2}x \: - \: 1 \: = \: 0 } \\ \\<br /><br />\mathsf{\implies b^{2}x ( a^{2}x \: + \: 1 ) \: - \: 1( a^{2}x \: + \: 1 ) \: = \: 0} \\ \\<br /><br />\mathsf{\implies (a^{2}x \: + \: 1)(b^{2}x \: - \: 1 ) \: = \: 0 }<br /><br />\\ \\<br />\mathsf{By \: Zero \: Product \: Rule : } \\ \\<br /><br />\mathsf{\implies a^{2}x \: + \: 1 \: = \: 0 \quad \: or \quad b^{2}x \: - \: 1 \: = \: 0 } \\ \\<br /><br />\mathsf{\implies a^{2}x \: = \: -1 \quad \: or \quad b^{2}x \: = \: 1 } \\ \\<br /><br />\mathsf{\therefore \quad x \: = \: \dfrac{-1}{a^{2}} \quad \: or \quad x \: = \: \dfrac{1}{b^{2}}}




\underline{\textsf{By Quadratic Formula :}} \\ \\<br /><br />\mathsf{\implies a^{2}b^{2}x^{2} \: + \: b^{2}x \: - \: a^{2}x \: - \: 1 \: = \: 0 } \\ \\<br /><br />\mathsf{\implies (ab)^{2}x^{2} \: + \: ( b^{2} \: - \: a^{2})x \: - \: 1 \: = \: 0 }

\textsf{Here : } \\ \\<br /><br />\mathsf{\implies Coefficient \: of \: x^{2} (\textbf{a}) \: = \: (ab)^{2}} \\ \\<br /><br />\mathsf{\implies Coefficient \: of \: b( \bold{b}) \: = \: (b^{2} \: - \: a^{2} )} \\ \\<br /><br />\mathsf{\implies Constant \: term (\textbf{c}) \: = \: - 1 }




\textsf{Using Quadratic Formula : } \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{- \bold{b} \: \pm \: \sqrt{ \bold{b}^{2} \: - \: 4 \bold{ac }}}{2 \bold{a}}}

\mathsf{\implies x \: = \: \dfrac{-(b^{2} \: - \: a^{2}) \: \pm \: \sqrt{(b^{2} \: - \: a^{2})^{2}\: - \: 4(ab)^{2} \: \times \: ( - 1)}}{2(ab)^{2}}}



\mathsf{\implies x \: = \: \dfrac{-b^{2} \: + \: a^{2} \: \pm \: \sqrt{b^{4} \: + \: a^{4} \: - \: 2 {a}^{2} {b}^{2} \: + \: 4 {a}^{2} {b}^{2} }}{2 {a}^{2} {b}^{2} }}




\mathsf{\implies x \: = \: \dfrac{-b^{2} \: + \: a^{2} \: \pm \: \sqrt{b^{4} \: + \: a^{4} \: + \: 2 {a}^{2} {b}^{2} \: }}{2 {a}^{2} {b}^{2} }}




\mathsf{\implies x \: = \: \dfrac{-b^{2} \: + \: a^{2} \: \pm \: \sqrt{(b^{2} )^{2} \: + \: (a^{2}) {}^{2} \: + \: 2 \: \cdot \: {a}^{2} \: \cdot {b}^{2} \: }}{2 {a}^{2} {b}^{2} }}




\mathsf{\implies x \: = \: \dfrac{-b^{2} \: + \: a^{2} \: \pm \: \sqrt{(b^{2} + \: {a}^{2} ) {}^{2} }}{2 {a}^{2} {b}^{2} }}




\mathsf{\implies x \: = \: \dfrac{-b^{2} \: + \: a^{2} \: \pm \: (b^{2} + \: {a}^{2} ) }{2 {a}^{2} {b}^{2} }}




\textsf{Taking +ve sign : } \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{ \cancel{-b^{2}} \: + \: a^{2} \: + \: \cancel{ b^{2}} \: + \: a^{2}}{2a^{2}b^{2}}}




\mathsf{\implies x \: = \: \dfrac{ \cancel{2a^{2}}}{ \: \: \cancel{2a^{2}}b^{2} \: \: }}<br />




\mathsf{\therefore \quad x \: = \: \dfrac{ 1}{ \: b^{2}}}<br />




\textsf{Taking - ve sign : } \\ \\<br /><br />\mathsf{\implies x \: = \: \dfrac{ {-b^{2}} \: + \: \cancel{a^{2}} \: - \: { b^{2}} \: - \: \cancel{a^{2}}}{2a^{2}b^{2}}}




\mathsf{\implies x \: = \: \dfrac{ \cancel{ - 2b^{2}}}{ \: \: \cancel{2b^{2}}a^{2} \: \: }}<br />




\mathsf{\therefore \quad x \: = \: \dfrac{ - 1}{ \: a^{2}}}<br />




\mathsf{\implies x \: = \: \dfrac{-1}{\: a^{2}} \: or \: \dfrac{1}{\: b^{2} \: }}<br />

Anonymous: Thanks !
Answered by RiskyJaaat
0
Answer :-

x = 1 / a² ; x = 1 / b²



Explaination :-


EQUATION = a² b² x² + b² x - a² x - 1

Solution :-

a² b² x² + b² x - a² x - 1 = 0

b² x ( a² x + 1 ) - 1 ( a² x + 1 ) = 0

( a² x + 1 ) ( b² x - 1 ) = 0

Now , Use Zero Product Rule

a² x + 1 = 0 ; b² x - 1 = 0

a² x = - 1 ; b² x = - 1

x = 1 / a² ; x = 1 / b²
Similar questions